Skip to main content
Log in

The Development of Thermal Nanoprobe Methods as a Means of Characterizing and Mapping Plasticizer Incorporation into Ethylcellulose Films

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The phase composition and distribution of ethylcellulose (EC) films containing varying amounts of the plasticizer fractionated coconut oil (FCO) were studied using a novel combination of thermal and mapping approaches.

Methods

The thermal and thermomechanical properties of films containing up to 30% FCO were characterized using modulated temperature differential scanning calorimetry (MTDSC) and dynamic mechanical analysis (DMA). Film surfaces were mapped using atomic force microscopy (AFM; topographic and pulsed force modes) and the composition of specific regions identified using nanothermal probes.

Results

Clear evidence of distinct conjugate phases was obtained for the 20–30% FCO/EC film systems. We suggest a model whereby the composition of the distinct phases may be estimated via consideration of the glass transition temperatures observed using DSC and DMA. By combining pulsed force AFM and nano-thermal analysis we demonstrate that it is possible to map the two separated phases. In particular, the use of thermal probes allowed identification of the distinct regions via localized thermomechanical analysis, whereby nanoscale probe penetration is measured as a function of temperature.

Conclusion

The study has indicated that by using thermal and imaging techniques in conjunction it is possible to both identify and map distinct regions in binary films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Repka MA, Majumdar S, Battu SK, et al. Applications of hot-melt extrusion for drug delivery. Exp Opinion Drug Del. 2008;5(12):1357–76.

    Article  CAS  Google Scholar 

  2. Rajabi-Siahboomi AR, Farrell TP. The applications of formulated systems for the aqueous film coating of pharmaceutical oral solid dosage forms. In: Felton L, McGinity J, editors. Aqueous polymeric coatings for pharmaceutical dosage forms. 3rd ed. New York: Informa Healthcare; 2008. pp. 323–344.

  3. Gordon M, Taylor JS. Ideal polymers and the second-order transitions of synthetic rubbers: non-crystalline copolymers. Journal of Application Chemistry. 1952;2:493–500.

    Article  CAS  Google Scholar 

  4. Marcilla A, Beltran M. Mechanisms of plasticizers action. In: Wypych G, editor. Handbook of plasticizers. Toronto: ChemTec Publishing; 2004. p. 107–21.

    Google Scholar 

  5. Sears JK, Darby JR. Technology of plasticizers. New York: John Wiley and Sons; 1982.

    Google Scholar 

  6. Fox TG, Flory PJ. Second-order transition temperatures and related properties of polystyrene. J Appl Phys. 1950;21:581–91.

    Article  CAS  Google Scholar 

  7. Flory PJ. Principles of polymer chemistry. Thaca, New York: Cornell University Press; 1953.

    Google Scholar 

  8. DiPaola-Baranyi G, Guillet JE. Estimation of polymer solubility parameters by gas-chromatography. Macromolecules. 1978;11:228–35.

    Article  CAS  Google Scholar 

  9. Qi S, Belton P, Nollenberger K, Clayden N, Reading M, Craig DQM. Characterisation and prediction of phase separation in hot-melt extruded solid dispersions: a thermal, microscopic and NMR relaxometry study. Pharm Res. 2010;27(9):1869–83.

    Article  PubMed  CAS  Google Scholar 

  10. Widjaja E, Kanaujia P, Lau G, Ng WK, Garland M, Saal C, Hanefeld A, Fischbach M, Maio M, Tan RBH. Detection of trace crystallinity in an amorphous system using raman microscopy and chemometric analysis. Eur J Pharm Sci. 2011;42(1–2):45–54.

    Article  PubMed  CAS  Google Scholar 

  11. Qi S, Gryczke A, Belton P, Craig DQM. Characterisation of solid dispersions of paracetamol and eudragit (R) E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis. Int J Pharm. 2008;354(1–2):158–67.

    Article  PubMed  CAS  Google Scholar 

  12. Lai H-L, Pitt Kl, Craig DQM. Characterisation of the thermal properties of ethylcellulose using differential scanning and quasi-isothermal calorimetric approaches. Int J Pharm. 2010;386:178–84.

    Article  PubMed  CAS  Google Scholar 

  13. Bheda J, Fellers JF, White JL. Phase-behaviour and structure of liquid crystalline solutions of cellulose dderivatives colloid. Polym Sci. 1980;258:1335–42.

    CAS  Google Scholar 

  14. Harding L, King WP, Dai X, Craig DQM, Reading M. Nanoscale characterisation and imaging of partially amorphous materials using local thermomechanical analysis and heated tip AFM. Pharm Res. 2007;24(11):2048–54.

    Article  PubMed  CAS  Google Scholar 

  15. Nelson BA, King WP. Measuring material softening with nanoscale spatial resolution using heated silicon probes. Rev Sci Instrum. 2007;78(2):023702.

    Article  PubMed  CAS  Google Scholar 

  16. Harding L, Wood J, Reading M, Craig DQM. Two- and three-dimensional imaging of multicomponent systems using scanning thermal microscopy and localized thermomechanical analysis. Anal Chem. 2007;79(1):129–39.

    Article  PubMed  CAS  Google Scholar 

  17. Hammiche A, Bozec L, Pollock HM, German M, Reading M. Progress in near-field photothermal infra-red microspectroscopy. J Microsc Oxford. 2004;213:129–34.

    Article  CAS  Google Scholar 

  18. Mrklic Z, Rusic D, Kovacic T. Kinetic model of the evaporation process of benzylbutyl phthalate from plasticized poly(vinyl chloride). Thermochim Acta. 2004;414(2):167–75.

    Article  CAS  Google Scholar 

  19. Reading M, Luget A, Wilson R. Modulated differential scanning calorimetry. Thermochim Acta. 1994;238:295–307.

    Article  CAS  Google Scholar 

  20. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E. Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci. 2003;90:1731–8.

    Article  CAS  Google Scholar 

  21. Okamoto K, Ichikawa T, Yokohara T, Yamaguchi M. Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends. Eur Polym J. 2009;45:2304–12.

    Article  CAS  Google Scholar 

  22. Jia Z, Tan J, Han C, Yang Y, Dong L. Poly(ethylene glycol-co-propylene glycol) as a macromolecular plasticizing agent for polylactide: thermomechanical properties and aging. J Appl Polym Sci. 2009;114:1105–17.

    Article  CAS  Google Scholar 

  23. Senichev VY, Tereshatov VV. Theories of compatibility. In: Wypych G, editor. Handbook of plasticizers. Toronto: ChemTec Publishing; 2004. p. 121–50.

    Google Scholar 

  24. Lodge TP, McLeish TCB. Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules. 2000;33:5278–84.

    Article  CAS  Google Scholar 

  25. Lodge TP, Wood ER, Haley JC. Two calorimetric glass transitions do not necessarily indicate immiscibility: the case of PEO/PMMA. J Polym Sci, Part B: Poly Phys. 2006;44:756–63.

    Article  CAS  Google Scholar 

  26. Simha R, Boyer RF. On a general relation involving the glass temperature and efficients of expansion of polymers. J Chem Phys. 1962;37:1003–7.

    Article  CAS  Google Scholar 

  27. Meincken M, Sanderson RD. Determination of the influence of the polymer structure and particle size on the film formation process of polymers by atomic force microscopy. Polymer. 2002;43(18):4947–55.

    Article  CAS  Google Scholar 

  28. Song M, Hourston DJ, Grandy DB, Reading M. An application of micro-thermal analysis to polymer blends. J Appl Polym Sci. 2001;81:2136–41.

    Article  CAS  Google Scholar 

  29. Royall PG, Kett VL, Andrews CS, Craig DQM. Identification of crystalline and amorphous regions in low molecular weight materials using microthermal analysis. J Phys Chem B. 2001;105:7021–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Colorcon Ltd. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan Q. M. Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, J., Levina, M., Rajabi-Siahboomi, A.R. et al. The Development of Thermal Nanoprobe Methods as a Means of Characterizing and Mapping Plasticizer Incorporation into Ethylcellulose Films. Pharm Res 29, 2128–2138 (2012). https://doi.org/10.1007/s11095-012-0742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0742-4

Key Words

Navigation