Skip to main content

Advertisement

Log in

Polymer Micelles with Hydrazone-Ester Dual Linkers for Tunable Release of Dexamethasone

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop polymer micelles for the tunable release of Dexamethasone (DEX) in tumors.

Methods

DEX was conjugated to poly(ethylene glycol)-poly(aspartate) block copolymers using hydrazone, ester, or hydrazone-ester dual linkers. Ketonic acids containing 3, 4, and 5 methylene groups were used as spacers to separate the dual linkers. Polymer micelles from the DEX-conjugated polymers were tested for drug release at different pH values and carboxylesterase activity levels.

Results

DLS measurements and 1H-NMR analysis confirmed all DEX-loaded micelles were <100 nm with core-shell structure. Single linker micelles appeared unsuitable to release DEX preferentially in acidic tumor tissues. Hydrazone linkages between DEX and polymers were non-degradable at both pH 7.4 and 5.0. Ester linkages stable at pH 5.0 were unstable at pH 7.4. Hydrazone-ester dual linkers suppressed DEX release at pH 7.4 while accelerating drug release at pH 5.0. DEX release decreased at pH 5.0 as the length of ketonic acid increased but was independent of spacer length at pH 7.4. Dual linker micelles were stable in the presence of carboxylesterases, suggesting DEX release was primarily due to pH-dependent hydrolysis.

Conclusion

Tunable release of DEX was achieved using pH-sensitive polymer micelles with hydrazone-ester dual linkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

    Article  PubMed  CAS  Google Scholar 

  2. Putnam D, Kopecek J. Polymer conjugates with anticancer activity. Adv Polym Sci. 1995;122:55–123.

    CAS  Google Scholar 

  3. Andresen TL, Thompson DH, Kaasgaard T. Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Mol Membr Biol. 2010;27(7):353–63.

    Article  PubMed  CAS  Google Scholar 

  4. Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release. 2008;132:164–70.

    Article  PubMed  CAS  Google Scholar 

  5. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    Article  PubMed  CAS  Google Scholar 

  6. Oosterhoff D, Pinedo HM, van der Meulen IH, de Graaf M, Sone T, Kruyt FA, et al. Secreted and tumour targeted human carboxylesterase for activation of irinotecan. Brit J Cancer. 2002;87:659–64.

    Article  PubMed  CAS  Google Scholar 

  7. Ponta A, Bae Y. PEG-poly(amino acid) block copolymer micelles for tunable drug release. Pharm Res. 2010;27(11):2330–42.

    Article  PubMed  CAS  Google Scholar 

  8. West KR, Otto S. Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol. 2005;2:123–60.

    Article  PubMed  CAS  Google Scholar 

  9. Kratz F, Beyer U, Schutte MT. Drug-polymer conjugates containing acid-cleavable bonds. Crit Rev Ther Drug. 1999;16:245–88.

    CAS  Google Scholar 

  10. Bae Y, Alani AWG, Rockich N, Lai TC, Kwon G. Mixed pH-sensitive polymeric micelles for combination drug delivery. Pharm Res. 2010;27(11):2421–32.

    Article  PubMed  CAS  Google Scholar 

  11. Bae Y, Diezi TA, Zhao A, Kwon GS. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release. 2007;122:324–30.

    Article  PubMed  CAS  Google Scholar 

  12. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  13. Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer. 2006;6:546–58.

    Article  PubMed  CAS  Google Scholar 

  14. Smalley KSM, Haass NK, Brafford PA, Lioni M, Flaherty KT, Herlyn M. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther. 2006;5:1136–44.

    Article  PubMed  CAS  Google Scholar 

  15. Atkins JH, Gershell LJ. Selective anticancer drugs. Nat Rev Cancer. 2002;2:645–6.

    Article  CAS  Google Scholar 

  16. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Del Rev. 1997;26:71–90.

    Article  CAS  Google Scholar 

  17. Seymour LW, Duncan R, Strohalm J, Kopecek J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res. 1987;21:1341–58.

    Article  PubMed  CAS  Google Scholar 

  18. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. PNAS. 1998;95(8):4607–12.

    Article  PubMed  CAS  Google Scholar 

  19. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  PubMed  CAS  Google Scholar 

  20. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986;46:6387–92.

    PubMed  CAS  Google Scholar 

  21. Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjugate Chem. 2007;18:1131–9.

    Article  CAS  Google Scholar 

  22. Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. PNAS. 2007;104:3460–5.

    Article  PubMed  CAS  Google Scholar 

  23. Navalitloha Y, Schwartz ES, Groothius EN, Allen CV, Levy RM, Groothius DR. Therapeutic implications of tumor interstitial fluid pressure in subcutaneous RG-2 tumors. Neuro Oncol. 2006;8:227–33.

    Article  PubMed  Google Scholar 

  24. Kristjansen PEG, Boucher Y, Jain RK. Dexamethasone reduces the interstitial fluid pressure in a human colon adenocarcinoma xenografts. Cancer Res. 1993;53:4764–6.

    PubMed  CAS  Google Scholar 

  25. Wang H, Wang Y, Rayburn ER, Hill DL, Rinehart JJ, Zhang R. Dexamethasone as a chemosensitizer for breast cancer chemotherapy: potentiation of the antitumor activity of adriamycin, modulation of cytokine expression, and pharmacokinetics. Int J Oncol. 2007;30:947–53.

    PubMed  CAS  Google Scholar 

  26. Wang H, Li M, Rinehart JJ, Zhang R. Pretreatment with dexamethasone increases antitumor activity of carboplatin and gemcitabine in mice bearing human cancer xenografts: in vivo activity, pharmacokinetics, and clinical implications for cancer chemotherapy. Clin Cancer Res. 2004;10:1633–44.

    Article  PubMed  CAS  Google Scholar 

  27. Franchimont D, Galon J, Gadina M, Visconti R, Zhou YJ, Aringer M, et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol. 2000;164:1768–74.

    PubMed  CAS  Google Scholar 

  28. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kB activity through induction of IkB synthesis. Science. 1995;270:286–90.

    Article  PubMed  CAS  Google Scholar 

  29. Liu XM, Quan LD, Tian J, Alnouti Y, Fu K, Thiele GM, et al. Synthesis and evaluation of a well-defined HPMA copolymer-dexamethasone conjugate for effective treatment of rheumatoid arthritis. Pharm Res. 2008;25:2910–9.

    Article  PubMed  CAS  Google Scholar 

  30. Wang D, Miller S, Liu XM, Anderson B, Wang XS, Goldring S. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res Ther. 2007;9(1):1–9.

    Article  CAS  Google Scholar 

  31. Krakovicova H, Etrych T, Ulbrich K. HPMA-based polymer conjugates with drug combination. Eur J Pharm Sci. 2009;37:405–12.

    Article  PubMed  CAS  Google Scholar 

  32. Leopold CS, Friend DR. In vitro study drug for the assessment of poly(L-aspartic acid) as a drug carrier for colon-specific drug delivery. Int J Pharm. 1995;126:139–45.

    Article  CAS  Google Scholar 

  33. Alani AWG, Bae Y, Rao DA, Kwon GS. Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel. Biomaterials. 2010;31:1765–72.

    Article  PubMed  CAS  Google Scholar 

  34. Howard MD, Jay M, Dziubla TD, Lu X. PEGylation of nanocarrier drug delivery systems: state of the art, J. Biomed Nanotechnol. 2008;4(2):133–48.

    Article  CAS  Google Scholar 

  35. Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release. 2004;95(3):613–26.

    Article  PubMed  CAS  Google Scholar 

  36. Takakura Y, Hashida M. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm Res. 1996;13:820–31.

    Article  PubMed  CAS  Google Scholar 

  37. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci. 1994;83:601–6.

    Article  PubMed  CAS  Google Scholar 

  38. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 2006;98:335–44.

    Article  PubMed  CAS  Google Scholar 

  39. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  PubMed  CAS  Google Scholar 

  40. Lian T, Ho RJY. Trends and developments in liposome drug delivery systems. J Pharm Sci. 2001;90:667–80.

    Article  PubMed  CAS  Google Scholar 

  41. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73:137–72.

    Article  PubMed  CAS  Google Scholar 

  42. Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100:572–9.

    Article  PubMed  CAS  Google Scholar 

  43. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61:768–84.

    Article  PubMed  CAS  Google Scholar 

  44. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed. 2003;42(38):4640–3.

    Article  CAS  Google Scholar 

  45. Li B, Sedlacek M, Manoharan I, Boopathy R, Duysen EG, Masson P, et al. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem Pharmacol. 2005;70:1673–84.

    Article  PubMed  CAS  Google Scholar 

  46. Kim MS, Cote CJ, Cristoloveanu C, Roth AG, Vornov P, Jennings MA, et al. There is no dose-escalation response to dexamethasone (0.0625–1.0 mg/kg) in pediatric tonsillectomy or adenotonsillectomy patients for preventing vomiting, reducing pain, shortening time to first liquid intake, or the incidence of voice change. Anesth Analg. 2007;104:1052–8.

    Article  PubMed  CAS  Google Scholar 

  47. Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Design. 2006;12:4669–84.

    Article  CAS  Google Scholar 

  48. Kale AA, Torchilin VP. Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the pH stability of PEG-PE conjugates. Bioconjug Chem. 2007;18:363–70.

    Article  PubMed  CAS  Google Scholar 

  49. Baker MA, Gray BD, Ohlsson-Wilhelm BM, Carpenter DC, Muirhead KA. Zyn-linked colchicines: controlled-release lipophilic prodrugs with enhanced antitumor efficacy. J Controlled Release. 1996;40:89–100.

    Article  CAS  Google Scholar 

  50. Jordan CGM. How an increase in the carbon chain length of the ester moiety affects the stability of a homologous series of oxprenolol esters in the presence of biological enzymes. J Pharm Sci. 1998;87:880–5.

    Article  PubMed  CAS  Google Scholar 

  51. Yoshioka S, Stella VJ. Stability of drugs and dosage forms. New York: Kluwer Academic/Plenum Publishers; 2000.

    Google Scholar 

  52. Bae Y, Nishiyama N, Fukushima S, Koyama H, Matsumura Y, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem. 2005;16:122–30.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors acknowledge financial support provided by the Kentucky Lung Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younsoo Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, M.D., Ponta, A., Eckman, A. et al. Polymer Micelles with Hydrazone-Ester Dual Linkers for Tunable Release of Dexamethasone. Pharm Res 28, 2435–2446 (2011). https://doi.org/10.1007/s11095-011-0470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0470-1

KEY WORDS

Navigation