Skip to main content
Log in

Dual stimuli-responsive polymeric prodrug consisting of reversible covalent bonded celastrol for tumor targeted delivery

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this work, pH/GSH-responsive amphiphilic polymeric prodrug (EDA-GLA/CE/2-FPBA) was successfully prepared and could self-assembled into micelles in an aqueous solution. The EDA-GLA/CE/2-FPBA micelles possessed high stability in physiological condition and were pH and GSH sensitive due to the reversible borate ester bonds and disulfide bonds within the prodrug polymer. The structures of the prodrug polymers were characterized by NMR, FTIR, UV–vis spectroscopy. Transmission electron microscopy and dynamic light scattering measurement indicated that the resulting micelles have desirable size distribution and regular spherical shape. Free active Celastrol can be released under low pH and high GSH environment; In vitro cellular uptake and growth inhibition assays suggested that the blank polymer micelles showed good biocompatibility. EDA-GLA/CE/2-FPBA micelles were more efficiently internalized by monolayer tumor cells and demonstrated superior tumor targeting effects as compared to free Celastrol control. These results demonstrated that the novel prodrug self-assembled dual-responsive nano-delivery platform was able to improve the bioavailability and tumor targeting activity of Celastrol, which provides a basis for further clinical applications of Celastrol and its derivatives.

Graphical Abstract

Amphiphilic polymeric prodrug (EDA-GLA/CE/2-FPBA) containing gelatin, lipoic acid, ethylenediamine (EDA), 2-formylphenylboric acid (2-FPBA) was developed, which can self-assembled into micelles in an aqueous solution. Borate ester bond and sulfhydryl groups in the micelles endow the micelles with the ability to respond to high concentration of GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Wang, L. Yang, Z. Chen, D.M. Shin, Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin. 58(2), 97–110 (2010)

    Article  CAS  Google Scholar 

  2. K.M. Morrissey, T.M. Yuraszeck, C.-C. Li, Y. Zhang, S. Kasichayanula, Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities. Clin. Transl. Sci. 9(2), 89–104 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. K.D. Miller, L. Nogueira, T. Devasia, A.B. Mariotto, K.R. Yabroff, A. Jemal, J. Kramer et al., Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 72(5), 409–436 (2022)

    Article  PubMed  Google Scholar 

  4. T.J. Royce, M.M. Qureshi, M.T. Truong, Radiotherapy utilization and fractionation patterns during the first course of cancer treatment in the United States from 2004 to 2014. J. Am. Coll. Radiol. 15(11), 1558–1564 (2018)

    Article  PubMed  Google Scholar 

  5. J.M. Brown, A.J. Giaccia, The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Can. Res. 58(7), 1408–1416 (1998)

    CAS  Google Scholar 

  6. M. Das, C. Mohanty, Sanjeeb K Sahoo, Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv. 6(3), 285–304 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. P. Mi, N. Nishiyama, Polymeric nanocarriers for cancer therapy, in Nano-Oncologicals: New Targeting and Delivery Approaches. ed. by B.M.H. Alonso, M. Garcia-Fuentes (Springer, Spain, 2014), pp.67–94

    Chapter  Google Scholar 

  8. N.A. Atiyah, T.M. Albayati, M.A. Atiya, Functionalization of mesoporous MCM-41 for the delivery of curcumin as an anti-inflammatory therapy. Adv. Powder Technol. 33(2), 103417 (2022)

    Article  CAS  Google Scholar 

  9. N. Singh, S. Son, J. An, I. Kim, M. Choi, N. Kong, W. Tao, J.S. Kim, Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem. Soc. Rev. 50, 12883–12896 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. S.B. Patil, S.Z. Inamdar, K.R. Reddy, A.V. Raghu, K.G. Akamanchi, A.C. Inamadar, K.K. Das, R.V. Kulkarni, Functionally tailored electro-sensitive poly (acrylamide)-g-pectin copolymer hydrogel for transdermal drug delivery application: synthesis, characterization, in-vitro and ex-vivo evaluation. Drug Deliv. Lett. 10(3), 85–196 (2020)

    Google Scholar 

  11. S. Mohapatra, S. Ranjan, N. Dasgupta, R. Mishra, S. Thomas, Nanocarriers carriers for drug delivery, 1st edn. (Elsevier, Amsterdam, 2018)

    Google Scholar 

  12. M. Meyyappan, Nanotechnology: opportunities and challenges. Electron. Today 37(9), 61–63 (2005)

    Google Scholar 

  13. P. Parhi, C. Mohanty, S.K. Sahoo, Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discovery Today 17(17–18), 1044–1052 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. J. Nicolas, L. Moine, G. Barratt, Polymeric nanoparticles for drug delivery, in Polymeric Biomaterials, 1st edn., ed. by S. Dumitriu, V. Popa (CRC Press, Florida, 2013), pp.123–152

    Google Scholar 

  15. A. Zielińska, F. Carreiró, A.M. Oliveira, A. Neves, B. Pires, D.N. Venkatesh et al., Polymeric nanoparticles: production, characterization Toxicology and Ecotoxicology. Molecules 25(16), 3731 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  16. S.Y. Lee, H.S. Park, K.Y. Lee, H.J. Kim, Y.J. Jeon, T.W. Jang et al., Paclitaxel-loaded polymeric micelle (230 mg/m(2)) and cisplatin (60 mg/m(2)) vs. paclitaxel (175 mg/m(2)) and cisplatin (60 mg/m(2)) in advanced non-small-cell lung cancer: a multicenter randomized phase iib trial. Clin. Lung Cancer 14(3), 275–282 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. S.W. Lee, Y.M. Kim, C.H. Cho, Y.T. Kim, S.M. Kim, S.Y. Hur et al., An open-label, randomized, parallel, phase ii trial to evaluate the efficacy and safety of a cremophor-free polymeric micelle formulation of paclitaxel as first-line treatment for ovarian cancer: a korean gynecologic oncology group study (KGOG-3021). Cancer Res. Treat. 50(1), 195–203 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. J.X. Zhang, M.Q. Yan, X.H. Li, L.Y. Qiu, X.D. Li, X.J. Li, Y. Jin et al., Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm. Res. 24, 1944–1953 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. X. Wang, Xu. Bing Wei, J.W. Cheng, R. Tang, Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration. Nanotechnology 27(38), 385101 (2016)

    Article  ADS  PubMed  Google Scholar 

  20. J.D. Twibanire, T.B. Grindley, Polyester dendrimers: smart carriers for drug delivery. Polymers 6(1), 179–213 (2014)

    Article  Google Scholar 

  21. X. Ke, V.W. Ng, R.J. Ono, J.M. Chan, S. Krishnamurthy, Y. Wang et al., Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J. control. Releas. 193, 9–26 (2014)

    Article  CAS  Google Scholar 

  22. T. Maeda, H. Otsuka, A. Takahara, Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 34(7), 581–604 (2009)

    Article  CAS  Google Scholar 

  23. P. Gou, W. Liu, W. Mao, J. Tang, Y. Shen, M. Sui, Self-assembling doxorubicin prodrug forming nanoparticles for cancer chemotherapy: synthesis and anticancer study in vitro and in vivo. J. Mater. Chem. B 1(3), 284–292 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Y.E. Aguirre-Chagala, J.L. Santos, Y. Huang, M. Herrera-Alonso, Phenylboronic acid-installed polycarbonates for the ph-dependent release of diol-containing molecules. ACS Macro Lett. 3(12), 1249–1253 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Hu. Xianglong, Hu. Jinming, J. Tian, Z. Ge, G. Zhang, K. Luo et al., Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 135(46), 17617–17629 (2013)

    Article  Google Scholar 

  26. A.C. Allison, R. Cacabelos, V.R. Lombardi, X.A. Alvarez, C. Vigo, Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 25(7), 1341–1357 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. A. Salminen, M. Lehtonen, T. Paimela, K. Kaarniranta, Celastrol: molecular targets of thunder god vine. Biochem. Biophys. Res. Commun. 394(3), 439–442 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. H. Zhu, W.-J. Ding, Wu. Rui, Q.-J. Weng, J.-S. Lou, R.-J. Jin, Synergistic anti-cancer activity by the combination of TRAIL/APO-2L and celastrol. Cancer Invest. 28(1), 23–32 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. S. Huang, Y. Tang, X. Cai, X. Peng, X. Liu, L. Zhang, Celastrol inhibits vasculogenesis by suppressing the VEGF-induced functional activity of bone barrow-derived endothelial progenitor cells. Biochem. Biophys. Res. Commun. 423(3), 467–472 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. S.Y. Jang, S.W. Jang, J. Ko, Celastrol inhibits the growth of estrogen positive human breast cancer cells through modulation of estrogen receptorα. Cancer Lett. 300(1), 57–65 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. P.-P. Li, W. He, P.-F. Yuan, S.-S. Song, Lu. Jing-Tao, W. Wei, Celastrol induces mitochondria-mediated apoptosis in hepatocellular carcinoma bel-7402 cells. Am. J. Chin. Med. 43(1), 137–148 (2015)

    Article  PubMed  Google Scholar 

  32. H. Ni, W. Zhao, X. Kong, H. Li, J. Ouyang, Celastrol inhibits lipopolysaccharide-induced angiogenesis by suppressing tlr4-triggered nuclear factor-kappa B activation. Acta Haematol. 131(2), 102–111 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. V.R. Yadav, B. Sung, S. Prasad, R. Kannappan, S.G. Cho, M. Liu et al., Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. J. Mol. Med. 88(12), 1243–1253 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Kim, H. Kang, S.-W. Jang, J. Ko, Celastrol inhibits breast cancer cell invasion via suppression of NF-κB-mediated matrix metalloproteinase-9 expression. Cell. Physiol. Biochem. 28(2), 175–184 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. X.H. Cai, J. Jin, M.H. He, 2016 Advances in structural modifications of celastrol. ARKIVOC 1, 172–182 (2016)

    Article  Google Scholar 

  36. A. Trott, J.D. West, L. Klaić, S.D. Westerheide, R.B. Silverman, R.I. Morimoto et al., Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol. Biol. Cell 19(3), 1104–1112 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J.H. Lee, T.H. Koo, H. Yoon, H.S. Jung, H.Z. Jin, K. Lee et al., Inhibition of NF-κB activation through targeting IκB kinase by celastrol, a quinone methide triterpenoid. Biochem. Pharmacol. 72(10), 1311–1321 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. S. Sreeramulu, S.L. Gande, M. Göbel, H. Schwalbe, Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Angewandte chemie-international edition. 48(32), 5853–5855 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. P. Ashrit, B. Sadanandan, L. Kyathsandra Natraj, K. Shetty, V. Vaniyamparambath, A.V. Raghu, Microplate-based response surface methodology model for growth optimization and biofilm formation on polystyrene polymeric material in a Candida albicans and Escherichia coli co-culture. Polym. Adv. Technol. 33(9), 2872–2885 (2022)

    Article  CAS  Google Scholar 

  40. G. Divyashri, T.P. Murthy, K.V. Ragavan, G.M. Sumukh, L.S. Sudha, S. Nishka, G. Himanshi, N. Misriya, B. Sharada, R.A. Venkataramanaiah, Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon. 9(9), e20212 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A.T. Khadim, T.M. Albayati, N.M. Saady, Removal of sulfur compounds from real diesel fuel employing the encapsulated mesoporous material adsorbent Co/MCM-41 in a fixed-bed column. Microporous Mesoporous Mat. 341, 112020 (2022)

    Article  CAS  Google Scholar 

  42. N.S. Ali, Z.T. Alismaeel, H.S. Majdi, H.G. Salih, M.A. Abdulrahman, N.M. Saady, T.M. Albayati, Modification of SBA-15 mesoporous silica as an active heterogeneous catalyst for the hydroisomerization and hydrocracking of n-heptane. Heliyon 8(6), e09737 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. N.S. Ali, N.M. Jabbar, S.M. Alardhi, H.S. Majdi, T.M. Albayati, Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: isotherm, kinetics, and thermodynamic studies. Heliyon. 8(8), e10276 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. A.V. Raghu, H.M. Jeong, J.H. Kim, Y.R. Lee, Y.B. Cho, K. Sirsalmath, Synthesis and characterization of novel polyurethanes based on 4-{(4-Hydroxyphenyl)iminomethyl}phenol. Macromol. Res. 16(3), 194–199 (2008)

    Article  CAS  Google Scholar 

  45. N.A. Atiyah, T.M. Albayati, M.A. Atiya, Interaction behavior of curcumin encapsulated onto functionalized SBA-15 as an efficient carrier and release in drug delivery. J. Mol. Struct. 1260(15), 132879 (2022)

    Article  CAS  Google Scholar 

  46. N.S. Ali, H.N. Harharah, I.K. Salih, N.M. Cata Saady, S. Zendehboudi, T.M. Albayati, Applying MCM-48 mesoporous material, equilibrium, isotherm, and mechanism for the effective adsorption of 4-nitroaniline from wastewater. Sci. Rep. 13, 9837 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. B. Salehi, Y. Berkay Yılmaz, G. Antika, T. Boyunegmez Tumer, M. Fawzi Mahomoodally, D. Lobine et al., Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules 9(8), 356 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Foox, M. Zilberman, Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv. 12(9), 1547–1563 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. Ş Yıldırım, H. Akyıldız, Z. Çetinkaya, Synthesis of glucose/fructose sensitive poly(ethylene glycol) methyl ether methacrylate particles with novel boronate ester bridge crosslinker and their dye release applications. Acta Chim. Slov. 69(1), 39–48 (2022)

    PubMed  Google Scholar 

  50. Wu. Zhongyu, M. Li, H. Fang, B. Wang, A new boronic acid based fluorescent reporter for catechol. Bioorg. Med. Chem. Lett. 22(23), 7179–7182 (2012)

    Article  Google Scholar 

  51. C. Wang, P. Qi, Lu. Yan, L. Liu, Y. Zhang, Q. Sheng et al., Bicomponent polymeric micelles for pH-controlled delivery of doxorubicin. Drug Deliv. 27(1), 344–357 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  52. P. Zhang, Xu. Qinan, X. Li, Y. Wang, pH-responsive polydopamine nanoparticles for photothermally promoted gene delivery. Mat. Sci. Eng. C Mater. Biol. Appl. 108, 110396 (2020)

    Article  CAS  Google Scholar 

  53. R. Mo, Gu. Zhen, Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 19, 274–283 (2016)

    Article  CAS  Google Scholar 

  54. A.A. Cluntun, M.J. Lukey, R.A. Cerione, J.W. Locasale, Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 3(3), 169–180 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. B. Sun, C. Luo, Yu. Han, X. Zhang, Q. Chen, W. Yang et al., Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 18(6), 3643–3650 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  56. M.H. Lee, J.L. Sessler, J.S. Kim, Disulfide-based multifunctional conjugates for targeted theranostic drug delivery. Acc. chem. Res.. 48(11), 2935–2946 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. L. Zhang, Y. Ding, Q. Wen, C. Ni, Synthesis of core-crosslinked zwitterionic polymer nano aggregates and pH/Redox responsiveness in drug-controlled release. Mat. Sci. Eng. C Mater. Biol. Appl. 106, 110288 (2020)

    Article  CAS  Google Scholar 

  58. J. Qin, Y. Huang, G. Yan, J. Wang, Hu. Liefeng, P. Zhang, R. Tang, Phenylboronic acid-functionalized ultra-pH-sensitivemicelles for enhanced tumor penetration and inhibitionin vitro. J. Mater. Sci. 54, 5695–5711 (2019)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Collaborative Grant-in-Aid of the HBUT National “111” Center for Cellular Regulation and Molecular Pharmaceutics (XBTK-2021009) and Research Funds from Hubei University of Technology(GCRC20200013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Guo.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests, we do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Rao, M., Dai, H. et al. Dual stimuli-responsive polymeric prodrug consisting of reversible covalent bonded celastrol for tumor targeted delivery. Macromol. Res. 32, 173–186 (2024). https://doi.org/10.1007/s13233-023-00218-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00218-6

Keywords

Navigation