Skip to main content
Log in

High-Throughput Screening of Excipients Intended to Prevent Antigen Aggregation at Air-Liquid Interface

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The aim was to develop a high-throughput screening method compatible with low protein concentrations, as present in vaccines, in order to evaluate the performance of various excipients in preventing the aggregation at air-liquid interface of an experimental recombinant antigen called Antigen 18A.

Methods

Aggregation of Antigen 18A was triggered by shaking in a half-filled vial or by air bubbling in a microplate. Size-exclusion chromatography, turbidimetry, Nile Red fluorescence spectroscopy, and attenuated total reflection Fourier-transform infrared spectroscopy were used to assess Antigen 18A aggregation. A high-throughput method, based on tryptophan fluorescence spectroscopy, was set up to screen excipients for their capability to prevent Antigen 18A aggregation at air-liquid interface.

Results

While a similar aggregation profile was obtained with both stress tests when using size-exclusion chromatography, spectroscopic and turbidimetric methods showed an influence of the stress protocol on the nature of the aggregates. The high-throughput screening revealed that 7 out of 44 excipients significantly prevented Antigen 18A from aggregating. We confirmed the performance of hydroxypropyl-β-cyclodextrin and hydroxypropyl-γ-cyclodextrin, as well as poloxamers 188 and 407, in half-filled shaken vials.

Conclusions

A high-throughput screening approach can be followed for evaluating the performance of excipients against aggregation of a protein antigen at air-liquid interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Rathore N, Rajan RS. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog. 2008;24(3):504–14.

    Article  PubMed  CAS  Google Scholar 

  2. Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005;289(1–2):1–30.

    Article  PubMed  CAS  Google Scholar 

  3. Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharm Res. 2004;21(6):897–903.

    Article  PubMed  CAS  Google Scholar 

  4. Hlady V, Buijs J, Jennissen HP. Methods for studying protein adsorption. Methods Enzymol. 1999;309:402–29.

    Article  PubMed  CAS  Google Scholar 

  5. Sluzky V, Tamada JA, Klibanov AM, Langer R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. PNAS. 1991;88(21):9377–81.

    Article  PubMed  CAS  Google Scholar 

  6. Katakam M, Banga AK. Aggregation of insulin and its prevention by carbohydrate excipients. PDA J Pharm Sci Technol. 1995;49(4):160–5.

    PubMed  CAS  Google Scholar 

  7. Bringer J, Heldt A, Grodsky GM. Prevention of insulin aggregation by dicarboxylic amino acids during prolonged infusion. Diabetes. 1981;30(1):83–5.

    Article  PubMed  CAS  Google Scholar 

  8. Soenderkaer S, van de Weert M, Hansen LL, Flink J, Frokjaer S. Evaluation of statistical design/modeling for prediction of the effect of amino acids on agitation-induced aggregation of human growth hormone and human insulin. Drug Del Sci Tech. 2005;15:427–34.

    CAS  Google Scholar 

  9. Quinn R, Andrade JD. Minimizing the aggregation of neutral insulin solutions. J Pharm Sci. 1983;72(12):1472–3.

    Article  PubMed  CAS  Google Scholar 

  10. Charman SA, Mason KL, Charman WN. Techniques for assessing the effects of pharmaceutical excipients on the aggregation of porcine growth hormone. Pharm Res. 1993;10(7):954–62.

    Article  PubMed  CAS  Google Scholar 

  11. Maa YF, Hsu CC. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng. 1997;54(6):503–12.

    Article  PubMed  CAS  Google Scholar 

  12. Katakam M, Banga AK. Use of poloxamer polymers to stabilize recombinant human growth hormone against various processing stresses. Pharm Dev Technol. 1997;2(2):143–9.

    Article  PubMed  CAS  Google Scholar 

  13. Katakam M, Bell LN, Banga AK. Effect of surfactants on the physical stability of recombinant human growth hormone. J Pharm Sci. 1995;84(6):713–6.

    Article  PubMed  CAS  Google Scholar 

  14. Bam NB, Cleland JL, Yang J, Manning MC, Carpenter JF, Kelley RF, et al. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci. 1998;87(12):1554–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hagenlocher M, Pearlman R. Use of a substituted cyclodextrin for stabilization of solutions of recombinant human growth hormone. Pharm Res. 1989;6:S30.

    Google Scholar 

  16. Chou DK, Krishnamurthy R, Randolph TW, Carpenter JF, Manning MC. Effects of Tween 20 and Tween 80 on the stability of Albutropin during agitation. J Pharm Sci. 2005;94(6):1368–81.

    Article  PubMed  CAS  Google Scholar 

  17. Mahler HC, Muller R, Friess W, Delille A, Matheus S. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm. 2005;59(3):407–17.

    Article  PubMed  CAS  Google Scholar 

  18. Kiese S, Pappenberger A, Friess W, Mahler HC. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97(10):4347–66.

    Article  PubMed  CAS  Google Scholar 

  19. Serno T, Carpenter JF, Randolph TW, Winter G. Inhibition of agitation-induced aggregation of an IgG-antibody by hydroxypropyl-beta-cyclodextrin. J Pharm Sci. 2010;99(3):1193–206.

    PubMed  CAS  Google Scholar 

  20. Thirumangalathu R, Krishnan S, Ricci MS, Brems DN, Randolph TW, Carpenter JF. Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci. 2009;98(9):3167–81.

    Article  PubMed  CAS  Google Scholar 

  21. Joshi O, Chu L, McGuire J, Wang DQ. Adsorption and function of recombinant Factor VIII at the air-water interface in the presence of Tween 80. J Pharm Sci. 2009;98(9):3099–107.

    Article  PubMed  CAS  Google Scholar 

  22. Kreilgaard L, Jones LS, Randolph TW, Frokjaer S, Flink JM, Manning MC, et al. Effect of Tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII. J Pharm Sci. 1998;87(12):1597–603.

    PubMed  CAS  Google Scholar 

  23. Wang W, Wang YJ, Wang DQ. Dual effects of Tween 80 on protein stability. Int J Pharm. 2008;347(1–2):31–8.

    Article  PubMed  CAS  Google Scholar 

  24. Banga AK, Mitra R. Minimization of shaking-induced formation of insoluble aggregates of insulin by cyclodextrins. J Drug Target. 1993;1(4):341–5.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao H, Graf O, Milovic N, Luan X, Bluemel M, Smolny M, et al. Formulation development of antibodies using robotic system and High-Throughput Laboratory (HTL). J Pharm Sci. 2010;99(5):2279–94.

    PubMed  CAS  Google Scholar 

  26. Capelle MA, Gurny R, Arvinte T. A high throughput protein formulation platform: case study of salmon calcitonin. Pharm Res. 2009;26(1):118–28.

    Article  PubMed  CAS  Google Scholar 

  27. Ausar SF, Chan J, Hoque W, James O, Jayasundara K, Harper K. Application of extrinsic fluorescence spectroscopy for the high throughput formulation screening of aluminum-adjuvanted vaccines. J Pharm Sci. 2011;100(2):431–40.

    Article  PubMed  CAS  Google Scholar 

  28. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32.

    Article  PubMed  CAS  Google Scholar 

  29. Lakowicz JR. Principles of fluorescence spectroscopy. New York: Springer; 2004.

    Google Scholar 

  30. McGown EL, Hafeman DG. Multichannel pipettor performance verified by measuring pathlength of reagent dispensed into a microplate. Anal Biochem. 1998;258(1):155–7.

    Article  PubMed  CAS  Google Scholar 

  31. Goormaghtigh E, Ruysschaert JM, Raussens V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J. 2006;90(8):2946–57.

    Article  PubMed  CAS  Google Scholar 

  32. Kendrick BS, Dong A, Allison SD, Manning MC, Carpenter JF. Quantitation of the area of overlap between second-derivative amide I infrared spectra to determine the structural similarity of a protein in different states. J Pharm Sci. 1996;85(2):155–8.

    Article  PubMed  CAS  Google Scholar 

  33. Oehlert GW. A first course in design and analysis of experiments. New York: W.H. Freeman & Co; 2000.

    Google Scholar 

  34. Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4(2):67–73.

    Article  PubMed  Google Scholar 

  35. Sackett DL, Wolff J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal Biochem. 1987;167(2):228–34.

    Article  PubMed  CAS  Google Scholar 

  36. Sutter M, Oliveira S, Sanders NN, Lucas B, van Hoek A, Hink MA, et al. Sensitive spectroscopic detection of large and denatured protein aggregates in solution by use of the fluorescent dye Nile red. J Fluoresc. 2007;17(2):181–92.

    Article  PubMed  CAS  Google Scholar 

  37. Byler DM, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986;25(3):469–87.

    Article  PubMed  CAS  Google Scholar 

  38. Dong A, Huang P, Caughey WS. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990;29(13):3303–8.

    Article  PubMed  CAS  Google Scholar 

  39. Pain RH. Determining the fluorescence spectrum of a protein. Curr Protoc Protein Sci. 2004;S38:7.7.1–7.7.20.

  40. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci. 2010;99(5):2200–8.

    Article  PubMed  CAS  Google Scholar 

  41. Jorgensen L, Hostrup S, Moeller EH, Grohganz H. Recent trends in stabilising peptides and proteins in pharmaceutical formulation - considerations in the choice of excipients. Expert Opin Drug Deliv. 2009;6(11):1219–30.

    Article  PubMed  CAS  Google Scholar 

  42. Samra HS, He F, Bhambhani A, Pipkin JD, Zimmerer R, Joshi SB, et al. The effects of substituted cyclodextrins on the colloidal and conformational stability of selected proteins. J Pharm Sci. 2010;99(6):2800–18.

    PubMed  CAS  Google Scholar 

  43. Saski W, Shah SG. Availability of drugs in the presence of surface-active agents. I. Critical micelle concentrations of some oxyethylene oxypropylene polymers. J Pharm Sci. 1965;54:71–4.

    Article  PubMed  CAS  Google Scholar 

  44. Rassing J, Attwood D. Ultrasonic velocity and light-scattering studies on the polyoxyethylene-polyoxypropylene copolymer Pluronic F127 in aqueous solution. Int J Pharm. 1982;13(1):47–55.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by GlaxoSmithKline Biologicals. The authors thank BASF, CyDex, Roquette and Sasol for providing gift samples of excipients, Laurent Bessemans and Caroline de Raikem for their support in programming the liquid handling robot, Carine Schroeders for technical assistance with ELISA analyses, Bénédicte Gbaguidi for advice with ATR-FTIR spectroscopy, the GlaxoSmithKline Biologicals R&D Media Preparation team for preparing excipient solutions, and Ulrike Krause and Pascal Cadot for their continuous support in reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Préat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasnoy, S., Dezutter, N., Lemoine, D. et al. High-Throughput Screening of Excipients Intended to Prevent Antigen Aggregation at Air-Liquid Interface. Pharm Res 28, 1591–1605 (2011). https://doi.org/10.1007/s11095-011-0393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0393-x

KEY WORDS

Navigation