Skip to main content

Advertisement

Log in

Lipophilicity and Transporter Influence on Blood-Retinal Barrier Permeability: A Comparison with Blood-Brain Barrier Permeability

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To determine the lipophilicity trend line from the relationship between the blood-retinal barrier (BRB) permeability and the lipophilicity of permeants and compare it with that of the blood-brain barrier (BBB).

Methods

The retinal (RUI) and brain uptake index (BUI) of 26 radiolabeled compounds across the rat BRB and BBB, respectively, were measured using the carotid artery injection method.

Results

RUI was determined using 13 compounds expected to be transported from blood to the retina by passive diffusion and with a log n-octanol/Ringer distribution coefficient (DC) ranging from −2.56 to 2.48. The RUI values were correlated with the log of the DC [RUI = 46.2 × exp (0.515 × log DC), r 2 = 0.807]. A similar trend was obtained between BUI and lipophilicity. The RUI value for substrates of the influx transporters and P-glycoprotein (P-gp) was greater and smaller than the lipophilicity trend line, respectively. In contrast, [3H]verapamil, which is a substrate of P-gp, has a greater RUI value than the lipophilicity trend line, but not for BUI, suggesting that the BRB has an influx transport system for verapamil.

Conclusions

The lipophilicity trend line constructed from the RUI and DC values is considered to reflect the transport properties of drugs undergoing passive diffusion across the BRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Cunha-Vaz JG. The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78:715–21.

    Article  CAS  PubMed  Google Scholar 

  2. Hosoya K, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull. 2005;28:1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol. 1994;340:566–76.

    Article  CAS  PubMed  Google Scholar 

  4. Hosoya K, Tachikawa M. Inner blood-retinal barrier transporters: role of retinal drug delivery. Pharm Res. 2009;26:2055–65.

    Article  CAS  PubMed  Google Scholar 

  5. Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat. Invest Ophthalmol Vis Sci. 1992;33:377–83.

    CAS  PubMed  Google Scholar 

  6. Ohkura Y, Akanuma S, Tachikawa M, Hosoya K. Blood-to-retina transport of biotin via Na(+)-dependent multivitamin transporter (SMVT) at the inner blood-retinal barrier. Exp Eye Res. 2010;91:387–92.

    Article  CAS  PubMed  Google Scholar 

  7. Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K. L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2005;46:2522–30.

    Article  PubMed  Google Scholar 

  8. Tomi M, Kitade N, Hirose S, Yokota N, Akanuma S, Tachikawa M, et al. Cationic amino acid transporter 1-mediated L-arginine transport at the inner blood-retinal barrier. J Neurochem. 2009;111:716–25.

    Article  CAS  PubMed  Google Scholar 

  9. Hosoya K, Makihara A, Tsujikawa Y, Yoneyama D, Mori S, Terasaki T, et al. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J Pharmacol Exp Ther. 2009;329:87–93.

    Article  CAS  PubMed  Google Scholar 

  10. Tagami M, Kusuhara S, Honda S, Tsukahara Y, Negi A. Expression of ATP-binding cassette transporters at the inner blood-retinal barrier in a neonatal mouse model of oxygen-induced retinopathy. Brain Res. 2009;1283:186–93.

    Article  CAS  PubMed  Google Scholar 

  11. Asashima T, Hori S, Ohtsuki S, Tachikawa M, Watanabe M, Mukai C, et al. ATP-binding cassette transporter G2 mediates the efflux of phototoxins on the luminal membrane of retinal capillary endothelial cells. Pharm Res. 2006;23:1235–42.

    Article  CAS  PubMed  Google Scholar 

  12. Kadam RS, Kompella UB. Influence of lipophilicity on drug partitioning into sclera, choroid-retinal pigment epithelium, retina, trabecular meshwork, and optic nerve. J Pharmacol Exp Ther. 2010;332:1107–20.

    Article  CAS  PubMed  Google Scholar 

  13. Cornford EM. The blood-brain barrier, a dynamic regulation interface. Mol Physiol. 1985;7:219–59.

    CAS  Google Scholar 

  14. Pardridge WM, Triguero D, Yang J, Cancilla PA. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J Pharmacol Exp Ther. 1990;253:884–91.

    CAS  PubMed  Google Scholar 

  15. Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980;23:682–4.

    Article  CAS  PubMed  Google Scholar 

  16. Alm A, Törnquist P. The uptake index method applied to studies on the blood-retinal barrier. I. A methodological study. Acta Physiol Scand. 1981;113:73–9.

    Article  CAS  PubMed  Google Scholar 

  17. Törnquist P, Alm A. Carrier-mediated transport of amino acids through the blood-retinal and the blood-brain barriers. Graefes Arch Clin Exp Ophthalmol. 1986;224:21–5.

    Article  PubMed  Google Scholar 

  18. Pardridge WM, Fierer G. Blood-brain barrier transport of butanol and water relative to N-isopropyl-p-iodoamphetamine as the internal reference. J Cereb Blood Flow Metab. 1985;5:275–81.

    CAS  PubMed  Google Scholar 

  19. Pardridge WM, Mietus LJ, Frumar AM, Davidson BJ, Judd HL. Effects of human serum on transport of testosterone and estradiol into rat brain. Am J Physiol. 1980;239:E103–8.

    CAS  PubMed  Google Scholar 

  20. Crone C. The permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol Scand. 1963;58:292–305.

    Article  CAS  PubMed  Google Scholar 

  21. Puchowicz MA, Xu K, Magness D, Miller C, Lust WD, Kern TS, et al. Comparison of glucose influx and blood flow in retina and brain of diabetic rats. J Cereb Blood Flow Metab. 2004;24:449–57.

    Article  PubMed  Google Scholar 

  22. Pardridge WM, Mietus LJ. Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. J Clin Invest. 1979;64:145–54.

    Article  CAS  PubMed  Google Scholar 

  23. Nagase K, Tomi M, Tachikawa M, Hosoya K. Functional and molecular characterization of adenosine transport at the rat inner blood-retinal barrier. Biochim Biophys Acta. 2006;1758:13–9.

    Article  CAS  PubMed  Google Scholar 

  24. Okamoto M, Akanuma S, Tachikawa M, Hosoya K. Characteristics of glycine transport across the inner blood-retinal barrier. Neurochem Int. 2009;55:789–95.

    Article  CAS  PubMed  Google Scholar 

  25. Tachikawa M, Takeda Y, Tomi M, Hosoya K. Involvement of OCTN2 in the transport of acetyl-L-carnitine across the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2010;51:430–6.

    Article  PubMed  Google Scholar 

  26. Stoll J, Wadhwani KC, Smith QR. Identification of the cationic amino acid transporter (System y+) of the rat blood-brain barrier. J Neurochem. 1993;60:1956–9.

    Article  CAS  PubMed  Google Scholar 

  27. Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci USA. 1999;96:12079–84.

    Article  CAS  PubMed  Google Scholar 

  28. Yoneyama D, Shinozaki Y, Lu WL, Tomi M, Tachikawa M, Hosoya K. Involvement of system A in the retina-to-blood transport of l-proline across the inner blood-retinal barrier. Exp Eye Res. 2010;90:507–13.

    Article  CAS  PubMed  Google Scholar 

  29. Bleeker GM, van Haeringen NJ, Maas ER, Glasius E. Selective properties of the vitreous barrier. Exp Eye Res. 1968;7:37–46.

    Article  CAS  PubMed  Google Scholar 

  30. Ennis SR, Betz AL. Sucrose permeability of the blood-retinal and blood-brain barriers. Effects of diabetes, hypertonicity, and iodate. Invest Ophthalmol Vis Sci. 1986;27:1095–102.

    CAS  PubMed  Google Scholar 

  31. Pardridge WM, Boado RJ, Farrell CR. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem. 1990;265:18035–40.

    CAS  PubMed  Google Scholar 

  32. Park S, Sinko PJ. The blood-brain barrier sodium-dependent multivitamin transporter: a molecular functional in vitro-in situ correlation. Drug Metab Dispos. 2005;33:1547–54.

    Article  CAS  PubMed  Google Scholar 

  33. Bodis-Wollner I. Visual electrophysiology in Parkinson’s disease: PERG, VEP and visual P300. Clin Electroencephalogr. 1997;28:143–7.

    CAS  PubMed  Google Scholar 

  34. Bhaskar PA, Vanchilingam S, Bhaskar EA, Devaprabhu A, Ganesan RA. Effect of L-dopa on visual evoked potential in patients with Parkinson’s disease. Neurology. 1986;36:1119–21.

    CAS  PubMed  Google Scholar 

  35. Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, et al. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res. 2000;879:115–21.

    Article  CAS  PubMed  Google Scholar 

  36. Roth S, Rosenbaum PS, Osinski J, Park SS, Toledano AY, Li B, et al. Ischemia induces significant changes in purine nucleoside concentration in the retina-choroid in rats. Exp Eye Res. 1997;65:771–9.

    Article  CAS  PubMed  Google Scholar 

  37. Isakovic AJ, Abbott NJ, Redzic ZB. Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat. J Neurochem. 2004;90:272–86.

    Article  CAS  PubMed  Google Scholar 

  38. Forrest D, Reh TA, Rüsch A. Neurodevelopmental control by thyroid hormone receptors. Curr Opin Neurobiol. 2002;12:49–56.

    Article  CAS  PubMed  Google Scholar 

  39. Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. J Biol Chem. 2003;278:43489–95.

    Article  CAS  PubMed  Google Scholar 

  40. Kassem NA, Deane R, Segal MB, Chen R, Preston JE. Thyroxine (T4) transfer from CSF to choroid plexus and ventricular brain regions in rabbit: contributory role of P-glycoprotein and organic anion transporting polypeptides. Brain Res. 2007;1181:44–50.

    Article  CAS  PubMed  Google Scholar 

  41. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest. 1995;96:1698–705.

    Article  CAS  PubMed  Google Scholar 

  42. Tsuji A, Terasaki T, Takabatake Y, Tenda Y, Tamai I, Yamashima T, et al. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 1995;51:1427–37.

    Article  Google Scholar 

  43. Clarke G, O'Mahony SM, Cryan JF, Dinan TG. Verapamil in treatment resistant depression: a role for the P-glycoprotein transporter? Hum Psychopharmacol. 2009;24:217–23.

    CAS  PubMed  Google Scholar 

  44. Bankstahl JP, Kuntner C, Abrahim A, Karch R, Stanek J, Wanek T, et al. Tariquidar-induced P-glycoprotein inhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and PET. J Nucl Med. 2008;49:1328–35.

    Article  CAS  PubMed  Google Scholar 

  45. Han YH, Sweet DH, Hu DN, Pritchard JB. Characterization of a novel cationic drug transporter in human retinal pigment epithelial cells. J Pharmacol Exp Ther. 2001;296:450–7.

    CAS  PubMed  Google Scholar 

  46. Mori S, Takanaga H, Ohtsuki S, Deguchi T, Kang YS, Hosoya K, et al. Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cereb Blood Flow Metab. 2003;23:432–40.

    Article  CAS  PubMed  Google Scholar 

  47. Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol. 2004;24:7612–21.

    Article  CAS  PubMed  Google Scholar 

  48. Hori S, Ohtsuki S, Tachikawa M, Kimura N, Kondo T, Watanabe M, et al. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem. 2004;90:526–36.

    Article  CAS  PubMed  Google Scholar 

  49. Smeets PH, van Aubel RA, Wouterse AC, van den Heuvel JJ, Russel FG. Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol. 2004;15:2828–35.

    Article  CAS  PubMed  Google Scholar 

  50. Kakee A, Terasaki T, Sugiyama Y. Selective brain to blood efflux transport of para-aminohippuric acid across the blood-brain barrier: in vivo evidence by use of the brain efflux index method. J Pharmacol Exp Ther. 1997;283:1018–25.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank Dr. M. Tomi, Mr. M. Okamoto, and Miss Y. Ohkura for technical assistance. This study was supported, in part, by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Hosoya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosoya, Ki., Yamamoto, A., Akanuma, Si. et al. Lipophilicity and Transporter Influence on Blood-Retinal Barrier Permeability: A Comparison with Blood-Brain Barrier Permeability. Pharm Res 27, 2715–2724 (2010). https://doi.org/10.1007/s11095-010-0272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0272-x

KEY WORDS

Navigation