Skip to main content

Advertisement

Log in

Vehicle Composition Influence on the Microneedle-Enhanced Transdermal Flux of Naltrexone Hydrochloride

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Transdermal delivery of drugs is often limited by formidable barrier properties of stratum corneum (SC). Microneedles (MN) enable creation of transient microchannels in the SC and bypass this barrier. Many reports have focused on the great effectiveness of MN in improving percutaneous flux values of a variety of drugs over a large molecular size spectrum. The objective of the present study is to evaluate the influence of formulation on MN-enhanced transdermal transport of naltrexone hydrochloride (NTX HCl).

Methods

A series of in vitro experiments employing binary mixtures of propylene glycol (PG) and water as vehicle were used with either MN-treated or untreated skin. A simple model taking into account two parallel flux values through intact skin and microchannels was used to analyze data.

Results

Transdermal permeation of NTX HCl from different donor solutions indicated that PG-rich formulations greatly limited MN-enhanced transport but had a much smaller effect on transport through intact skin.

Conclusions

Diffusion through the microchannel pathway seems to be donor viscosity-related and follows the relationship predicted by the Stokes-Einstein equation as shown by linear dependence of flux on diffusivity of NTX in donor solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Flynn GL. Cutaneous and transdermal delivery-processes and systems of delivery. Drugs Pharm Sci. 2002;121:187–235.

    CAS  Google Scholar 

  2. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24.

    Article  CAS  PubMed  Google Scholar 

  3. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    Article  CAS  PubMed  Google Scholar 

  4. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87:922–5.

    Article  CAS  PubMed  Google Scholar 

  5. McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA. 2003;100:13755–60.

    Article  CAS  PubMed  Google Scholar 

  6. Coulman SA, Barrow D, Anstey A, Gateley C, Morrissey A, Wilke N, et al. Minimally invasive cutaneous delivery of macromolecules and plasmid DNA via microneedles. Curr Drug Deliv. 2006;3:65–75.

    Article  CAS  PubMed  Google Scholar 

  7. Banks SL, Pinninti RR, Gill HS, Crooks PA, Prausnitz MR, Stinchcomb AL. Flux across microneedle-treated skin is increased by increasing charge of naltrexone and naltrexol in vitro. Pharm Res. 2008;25:1677–85.

    Article  CAS  PubMed  Google Scholar 

  8. Volpicelli JR, Rhines KC, Rhines JS, Volpicelli LA, Alterman AI, O’Brien CP. Naltrexone and alcohol dependence. Role of subject compliance. Arch Gen Psychiatry. 1997;54:737–42.

    CAS  PubMed  Google Scholar 

  9. Meyer MC, Straughn AB, Lo MW, Schary WL, Whitney CC. Bioequivalence, dose-proportionality, and pharmacokinetics of naltrexone after oral administration. J Clin Psychiatry. 1984;45:15–9.

    CAS  PubMed  Google Scholar 

  10. Wall ME, Brine DR, Perez-Reyes M. Metabolism and disposition of naltrexone in man after oral and intravenous administration. Drug Metab Dispos. 1981;9:369–75.

    CAS  PubMed  Google Scholar 

  11. Vivitrol website. http://www.vivitrol.com/hcp/Vivitrol_Info/adherence.aspx.

  12. Paudel KS, Nalluri BN, Hammell DC, Valiveti S, Kiptoo P, Hamad MO, et al. Transdermal delivery of naltrexone and its active metabolite 6-beta-naltrexol in human skin in vitro and guinea pigs in vivo. J Pharm Sci. 2005;94:1965–75.

    Article  CAS  PubMed  Google Scholar 

  13. Stinchcomb AL, Swaan PW, Ekabo O, Harris KK, Browe J, Hammell DC, et al. Straight-chain naltrexone ester prodrugs: diffusion and concurrent esterase biotransformation in human skin. J Pharm Sci. 2002;91:2571–8.

    Article  CAS  PubMed  Google Scholar 

  14. Vaddi HK, Hamad MO, Chen J, Banks SL, Crooks PA, Stinchcomb AL. Human skin permeation of branched-chain 3-O-alkyl ester and carbonate prodrugs of naltrexone. Pharm Res. 2005;22:758–65.

    Article  CAS  PubMed  Google Scholar 

  15. Vaddi HK, Banks SL, Chen J, Hammell DC, Crooks PA, Stinchcomb AL. Human skin permeation of 3-O-alkyl carbamate prodrugs of naltrexone. J Pharm Sci. 2009;98:2611–25.

    Article  CAS  PubMed  Google Scholar 

  16. Wermeling DP, Banks SL, Hudson DA, Gill HS, Gupta J, Prausnitz MR, et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci USA. 2008;105:2058–63.

    Article  CAS  PubMed  Google Scholar 

  17. Qiu Y, Gao Y, Hu K, Li F. Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release. 2008;129:144–50.

    Article  CAS  PubMed  Google Scholar 

  18. Badran MM, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci. 2009;36:511–23.

    Article  CAS  PubMed  Google Scholar 

  19. Osborne DW, Heneke JJ. Skin penetration enhancers cited in the technical literature. Pharm Technol. 1997;21:58–66.

    Google Scholar 

  20. Higuchi T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmet Chem. 1960;11:85–97.

    Google Scholar 

  21. Barry BW. Mode of action of penetration enhancers in human skin. J Control Release. 1987;6:85–97.

    Article  CAS  Google Scholar 

  22. Goodman M, Barry BW. Action of penetration enhancers on human skin as assessed by the permeation of model drugs 5-fluorouracil and estradiol. I. Infinite dose technique. J Invest Dermatol. 1988;91:323–7.

    Article  CAS  PubMed  Google Scholar 

  23. Megrab NA, Williams AC, Barry BW. Estradiol permeation through human skin and silastic membrane: effects of propylene glycol and supersaturation. J Control Release. 1995;36:277–94.

    Article  CAS  Google Scholar 

  24. Trottet L, Merly C, Mirza M, Hadgraft J, Davis AF. Effect of finite doses of propylene glycol on enhancement of in vitro percutaneous permeation of loperamide hydrochloride. Int J Pharm. 2004;274:213–9.

    Article  CAS  PubMed  Google Scholar 

  25. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Effect of propylene glycol on ibuprofen absorption into human skin in vivo. J Pharm Sci. 2007;97:185–97.

    Article  Google Scholar 

  26. Watkinson RM, Guy RH, Hadgraft J, Lane ME. Optimisation of cosolvent concentration for topical drug delivery—II: influence of propylene glycol on ibuprofen permeation. Skin Pharmacol Physiol. 2009;22:225–30.

    Article  CAS  PubMed  Google Scholar 

  27. Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Controlled Release. 2007;117(2):227–37.

    Google Scholar 

  28. Hussain MA, Koval CA, Myers MJ, Shami EG, Shefter E. Improvement of the oral bioavailability of naltrexone in dogs: a prodrug approach. J Pharm Sci. 1987;76:356–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lieband WR, Stein WD. Biological membranes behave as nonporous polymeric sheets with respect to the diffusion of nonelectrolytes. Nature (London, United Kingdom). 1969;224:240–3.

    Article  Google Scholar 

  30. Diamond JM, Katz Y. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membr Biol. 1974;17:121–54.

    Article  CAS  PubMed  Google Scholar 

  31. Kasting GB, Smith RL, Anderson BD. Prodrugs for dermal delivery: solubility, molecular size, and functional group effects. In: Sloan KB, editor. Prodrugs: topical and ocular drug delivery. New York, USA: Marcel Dekker; 1992. p. 117–61.

  32. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–9.

    Google Scholar 

  33. Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin. Theory and in vitro experimental measurement. AIChE J. 1975;21:985–96.

    Article  CAS  Google Scholar 

  34. Albery WJ, Hadgraft J. Percutaneous absorption: in vivo experiments. J Pharm Pharmacol. 1979;31:140–7.

    CAS  PubMed  Google Scholar 

  35. Tojo K. Random brick model for drug transport across stratum corneum. J Pharm Sci. 1987;76:889–91.

    Article  CAS  PubMed  Google Scholar 

  36. Edwards DA, Langer R. A linear theory of transdermal transport phenomena. J Pharm Sci. 1994;83:1315–34.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson ME, Blankschtein D, Langer R. Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J Pharm Sci. 1997;86:1162–72.

    Article  CAS  PubMed  Google Scholar 

  38. Talreja PS, Kasting GB, Kleene NK, Pickens WL, Wang T-F. Visualization of the lipid barrier and measurement of lipid pathlength in human stratum corneum. PharmSci [online computer file]. 3:No pp given; 2001.

  39. Frasch HF, Barbero AM. Steady-state flux and lag time in the stratum corneum lipid pathway: results from finite element models. J Pharm Sci. 2003;92:2196–207.

    Article  CAS  PubMed  Google Scholar 

  40. Flynn GL. Cutaneous and transdermal delivery: processes and systems of delivery. In: Rhodes CT, Banker GS, editors. Modern pharmaceutics. New York: Marcel Dekker; 1990. p. 239–98.

    Google Scholar 

  41. Bos JD, Meinardi MMHM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9:165–9.

    Article  CAS  PubMed  Google Scholar 

  42. Meidan M. Emerging technologies in transdermal therapeutics. Am J Ther. 2004;11:312–6.

    Article  PubMed  Google Scholar 

  43. Flynn GL, Yalkowsky SH, Roseman TJ. Mass transport phenomena and models. Theoretical concepts. J Pharm Sci. 1974;63:479–510.

    Article  CAS  PubMed  Google Scholar 

  44. Kretsos K, Kasting Gerald B. A geometrical model of dermal capillary clearance. Math Biosci. 2007;208:430–53.

    Article  PubMed  Google Scholar 

  45. Sznitowska M, Berner B, Maibach HI. In vitro permeation of human skin by multipolar ions. Int J Pharm. 1993;99:43–9.

    Article  CAS  Google Scholar 

  46. Cordero JA, Alarcon L, Escribano E, Obach R, Domenech J. A comparative study of the transdermal penetration of a series of nonsteroidal antiinflammatory drugs. J Pharm Sci. 1997;86:503–8.

    Article  CAS  PubMed  Google Scholar 

  47. Hadgraft J, Valenta C. pH, pKa and dermal delivery. Int J Pharm. 2000;200:243–7.

    Article  CAS  PubMed  Google Scholar 

  48. Kaufman JJ, Semo NM, Koski WS. Microelectrometric titration measurement of the pKa’s and partition and drug distribution coefficients of narcotics and narcotic antagonists and their pH and temperature dependence. J Med Chem. 1975;18:647–55.

    Article  CAS  PubMed  Google Scholar 

  49. Sugano K, Takata N, Machida M, Saitoh K, Terada K. Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. Int J Pharm. 2002;241:241–51.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr. Mark Prausnitz and Dr. Vladimir Zarnitsyn of Georgia Tech for providing the MN and expert advice. This research was supported by NIDA R01 DA13425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audra L. Stinchcomb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milewski, M., Stinchcomb, A.L. Vehicle Composition Influence on the Microneedle-Enhanced Transdermal Flux of Naltrexone Hydrochloride. Pharm Res 28, 124–134 (2011). https://doi.org/10.1007/s11095-010-0191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0191-x

KEY WORDS

Navigation