Skip to main content

Abstract

Delivery of active pharmaceutical ingredients through transdermal route has been limited due to the excellent barrier properties of the stratum corneum (SC) of the skin. Only drugs with very specific physicochemical properties (molecular weight < 500 daltons, adequate lipophilicity and low melting point) can be successfully administered transdermally. Disrupting the barrier properties of the SC is one of the techniques utilised in enhancing transdermal drug delivery. With this intention, microneedle/s (MN/MNs) have been developed that can painlessly penetrate the SC and create micropores through which drug molecules can readily permeate to the dermal microcirculation for absorption. MNs consist of a plurality of micron-sized needles, generally ranging from 25 to 2000 μm in height, of a variety of different shapes and composition (e.g. silicon, metal, sugars and biodegradable polymers). Even though the concept of MNs was first conceived in 1976, it was not possible to make such micron-sized medical devices until the first exploitation of microelectromechanical systems (MEMS) for this purpose in 1998. MEMS utilise a variety of techniques and highly sophisticated tools to allow fabrication of MNs from different materials with varying designs. Now, due to the MEMS, MNs are considered as one of the few third-generation enhancement strategies that will have a significant impact on medicine. Therefore, this chapter will focus on recent progress on MN technology that includes discussion on the fabrication techniques of MNs using MEMS, the design and material consideration of MNs and the application of MNs in drug delivery and monitoring biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arora A, Prausnitz MR, Mitragotri S (2008) Micro-scale devices for transdermal drug delivery. Int J Pharm 364:227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf MW, Tayyaba S, Afzulpurkar N (2011) Micro Electromechanical Systems (MEMS) based microfluidic devices for biomedical application. Int J Mol Sci 126:3648–3704

    Article  Google Scholar 

  • Bai W, Li Y, Yang C, Liu J, He D, Sugiyama S (2012) Fabrication of metal micro needle array by LIGA process. Adv Mater Res 418:1911–1914

    Google Scholar 

  • Ball J, Pike G (2008) Needlestick injury in 2008, Royal College of Nursing, 20 Cavendish Square, London, WIG ORN

    Google Scholar 

  • Banga A (2009) Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv 6(4):343–354

    Article  CAS  PubMed  Google Scholar 

  • Banks D (2006) Microengineering, MEMS, and interfacing. A practical guide. CRC, Taylor and Francis, Boca Raton

    Book  Google Scholar 

  • Bodhale DW, Nisar A, Afzulpurkar N (2010) Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid Nanofluid 8(3):373–392

    Article  CAS  Google Scholar 

  • Bouissou C, Sylvestre J, Guy R, Delgado-Charro M (2009) Reverse iontophoresis of amino acids: identification and separation of stratum corneum and subdermal sources in vitro. Pharma Res 26(12):2630–2638

    Article  CAS  Google Scholar 

  • Brancazio D (2012) Systems and interfaces for blood sampling, 600/576 edn, A61B 5/15, US

    Google Scholar 

  • Bystrova S, Luttge R (2011) Micromolding for ceramic microneedle arrays. Microelectron Eng 88(8):1681–1684

    Article  CAS  Google Scholar 

  • Chandrasekaran SK, Mohanty S, Frazier AB (2003) Autonomous microneedle system for biochemical analysis. Boston Transducers’03: Digest of Technical Papers 1 and 2, 1442–1445

    Google Scholar 

  • Chaudhri B, Ceyssens F, De Moor P, Van Hoof C, Puers R (2010) A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. J Micromech Microeng 20(6):064006

    Article  Google Scholar 

  • Ching C, Chou T, Sun T, Huang S, Shieh H (2011) Simultaneous, noninvasive, and transdermal extraction of urea and homocysteine by reverse iontophoresis. Int J Nanomedicine 6:417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Yoo D, Bondy B, Quan F, Compans R, Kang S et al (2012) Stability of influenza vaccine coated onto microneedles. Biomaterials 33(14):3756–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cormier M, Daddona PE (2003) Macroflux technology for transdermal delivery of therapeutic proteins and vaccines. Drugs Pharm Sci 126:589–598

    CAS  Google Scholar 

  • Corrie S, Fernando G, Crichton M, Brunck M, Anderson C, Kendall M (2010) Surface-modified microprojection arrays for intradermal biomarker capture, with low non-specific protein binding. Lab Chip 10(20):2655–2658

    Article  CAS  PubMed  Google Scholar 

  • Daddona P (2002) Macroflux® transdermal technology development for the delivery of therapeutic peptides and proteins. Drug Deliv Tech 2

    Google Scholar 

  • Daugimont L, Baron N, Vandermeulen G, Pavselj N, Miklavcic D, Jullien MC et al (2010) Hollow microneedle arrays from intradermal drug delivery and DNA electroporation. J Membr Biol 236:117–125

    Article  CAS  PubMed  Google Scholar 

  • DeMuth P, Su X, Samuel R, Hammond P, Irvine D (2010) Nano‐layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv Mater 22(43):4851–4856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly RF, Singh TRR, Tunney MM et al (2009) Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res 26(11):2513–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly RF, Singh T, Woolfson AD (2010b) ‘Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety’, Drug Delivery 17(4):187–207

    Google Scholar 

  • Donnelly RF, Singh TRR, Morrow D, Woolfson A (2012) Microneedle-mediated transdermal and intradermal drug delivery. Wiley, Chichester. doi:10.1002/9781119959687.index

  • Ebah LM, Read I, Sayce A, Morgan J, Chaloner C, Brenchley P, Mitra S (2012) ‘Reverse iontophoresis of urea in health and chronic kidney disease: a potential diagnostic and monitoring tool?’, European Journal of Clinical Investigation

    Google Scholar 

  • Gardeniers HJGE, Luttge R, Berenschot EJW, de Boer MJ et al (2003) Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectromech Syst 12(6):855–862

    Article  Google Scholar 

  • Garland MJ, Migalska K, Mahmood TM, Singh TR, Woolfson AD, Donnelly RF (2011) Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev Med Dev 8(4):459–482

    Article  CAS  Google Scholar 

  • Gerstel MS, Place VA (1976) Drug delivery device, in US Patent 1976; US39644821976

    Google Scholar 

  • Gill HS, Prausnitz MR (2007) Coated microneedles for transdermal delivery. J Control Release 117(2):227–237

    Article  CAS  PubMed  Google Scholar 

  • Goud J, Raj PM, Liu J, Narayan R, Iyer M (2007) Electrochemical biosensors and microfluidics in organic system-on-package technology. Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • Henry S, McAllister DV, Allen MG et al (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87(8):922–925

    Article  CAS  PubMed  Google Scholar 

  • Jae-Ho O, Park HH, Ki-Young DO, Han M, Hyun DH, Kim CG et al (2008) Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur J Pharm Biopharm 69:1040–1045

    Article  Google Scholar 

  • Jin CY, Han MH, Lee SS, Choi YH (2009) Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery. Biomed Microdevices 11(6):1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Khanna P, Strom J, Malone J, Bhansali S (2008) ‘Microneedle-based automated therapy for diabetes mellitus’, Journal of Diabetes Science and Technology 2(6):1122–1129

    Google Scholar 

  • Khumpuang S et al (2004) Proceedings of the Nanotechnology Conference and Trade Show, Boston, USA. Nano Science Technology Inst, Cambridge 1: 205–208

    Google Scholar 

  • Kim K, Park DS, Lu HM, Che W, Kim K, Lee JB et al (2004) A tapered hollow metallic microneedle array using backside exposure of SU-8. J Micromech Microeng 14:597

    Article  CAS  Google Scholar 

  • Kim A, Suecof L, Sutherland C, Gao L, Kuti J, Nicolau D (2008) In vivo microdialysis study of the penetration of daptomycin into soft tissues in diabetic versus healthy volunteers. Antimicrob Agents Chemother 52(11):3941–3946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Jung B, Park JH (2012) Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 33(2):668–678

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Suzuki H (2001) A sampling mechanism employing the phase transition of a gel and its application to a micro analysis system imitating a mosquito. Sens Actuators B Chem 80(1):1–8

    Article  CAS  Google Scholar 

  • Kong XQ, Wu CW (2010) Mosquito proboscis: an elegant biomicroelectromechanical system. Phys Rev E 82(1):011910

    Article  CAS  Google Scholar 

  • Koren G (1997) Therapeutic drug monitoring principles in the neonate. National Academy of Clinical Biochemistry. Clin Chem 43(1):222–227

    CAS  PubMed  Google Scholar 

  • Laermer F, Schilp A (1996) Method of Anisotropically Etching Silicon. US Patent Number 5:501–893

    Google Scholar 

  • Leboulanger B, Aubry J, Bondolfi G, Guy R, Delgado-Charro M (2004) Lithium monitoring by reverse iontophoresis in vivo. Clin Chem 50(11):2091–2100

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Ching CT, Sun T, Tsai C, Huang W, Huang H et al (2010) Non-invasive and transdermal measurement of blood uric acid level in human by electroporation and reverse iontophoresis. Int J Nanomedicine 5:991–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Liu C, Liu H, Jiang L, Yang Q, Cai X (2007) ‘Study of noninvasive sampling of subcutaneous glucose by reverse iontophoresis’, IEEE Service Center, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855–1331 USA

    Google Scholar 

  • Liu R, Wang X, Tang F, Feng Y, Zhou Z (2005) ‘An in-plane microneedles used for sampling and glucose analysis’, Proceedings of 13th International on Solid-State Sensors, Actuators and Microsystems 2:1517–1520

    Google Scholar 

  • Liu R, Wang X, Feng Y, Wang G, Liu J (2006) ‘Theoretical analytical ow model in hollow microneedles for non-forced uid extraction’, Proceedings of 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 1039–1042

    Google Scholar 

  • Luttge R, Berenschot EJW, de Boer MJ, Altpeter DM, Vrouwe EX, van den Berg A et al (2007) Integrated lithographic molding for microneedle-based devices. J Microelectromech Syst 16(4):872–884

    Article  CAS  Google Scholar 

  • Madou MJ (1997) Lithography. In: Madou MJ (ed) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC, Boca Raton, pp 1–71

    Google Scholar 

  • Matriano JA, Cormier M, Johnson J, Young WA et al (2002) Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • McAllister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2(1):289–313

    Article  CAS  PubMed  Google Scholar 

  • McAllister DV, Cros F, Davis SP, Matta LM, Prausnitz MR, Allen MG (1999) ‘Three dimensional hollow microneedle and microtube arrays’, Proceedings of 10th International Conference on Solid-State Sensor and Actuators Transducers, pp. 1098–1101.

    Google Scholar 

  • McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, Prausnitz MR (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. PNAS 100:13755–13760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikszta JA, Haider MI, Pettis RJ (2006) Microneedle for drug and vaccine delivery: when will the dream become a reality? In: Wille JJ (ed) Skin delivery systems: transdermals, dermatologicals, and cosmetic actives. Blackwell Publishing, Iowa, pp 309–325

    Google Scholar 

  • Moon SJ, Lee SS, Lee HS, Kwon TH (2005) Fabrication of microneedle array using LIGA and hot embossing process. Microsyst Technol 11(4–5):311–318

    Article  CAS  Google Scholar 

  • Moreno M, Oracle C, Quero J (2008) High-integrated microvalve for Lab-on-chip biomedical applications. In: Proceedings of biomedical circuits and systems conference, pp 313–316

    Google Scholar 

  • Moreno M, Aracil JC, Quero J (2009) Low cost fluid microextractor for Lab-on-chip. In: Proceedings of Spanish conference on electron devices, pp 274–277

    Google Scholar 

  • Mukerjee E, Issseroff R, Collins S, Smith R (2003) Microneedle array with integrated microchannels for transdermal sample extraction and in situ analysis. In proceedings of: Transducers, Solid-State Actuators and Microsystems. 12th International Conference on Vol 2. 1440–1441

    Google Scholar 

  • Mukerjee E, Collins S, Isseroff R, Smith R (2004) Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors Actuators A Phys 114(2–3):267–275

    Article  CAS  Google Scholar 

  • Nielsen JK, Freckmann G, Kapitza C, Ocvirk G, Caulker KH, Kamecke U et al (2009) Glucose monitoring by microdialysis: performance in a multicentre study. Diabet Med 26(7):714–721

    Article  CAS  PubMed  Google Scholar 

  • Oka K, Aoyagi S, Arai Y, Isono Y, Hashiguchi G, Fujita H (2002) Fabrication of a micro needle for a trace blood test. Sensors Actuators A Phys 97–98:478–485

    Article  Google Scholar 

  • Omatsu T, Chujo K, Miyamoto K, Okie M, Nakamura K, Aoki N et al (2010) Metal microneedle fabrication using twisted light with spin. Opt Express 18(17):17967–17973

    Article  CAS  PubMed  Google Scholar 

  • Paik S et al (2003) Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, US. IEEE 2:1446–1449

    Google Scholar 

  • Paik S et al (2004) ‘In-plane single-crystal-silicon microneedles for minimally invasive micro uid systems’, Sens Actuators A Phys A 114:276–284

    Google Scholar 

  • Park JH, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104:51–66

    Article  CAS  PubMed  Google Scholar 

  • Peters EE, Ameri M, Wang X, Maa YF, Daddona PE (2012) Erythropoietin-coated ZP-microneedle transdermal system: preclinical formulation, stability, and delivery. Pharm Res 29(6):1–9

    Article  Google Scholar 

  • Potts R, Tamada J, Tierney M (2002) Glucose monitoring by reverse iontophoresis. Diabetes Metab Res Rev 18(S1):S49–S53

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 565:581–587

    Article  Google Scholar 

  • Ramasubramanian MK, Barham OM, Swaminathan V (2008) Mechanics of a mosquito bite with applications to microneedle design. Bioinspir Biomim 3(4):046001

    Article  CAS  PubMed  Google Scholar 

  • Rapiti E, Prüss-Üstün A, Hutin Y (2005) Sharps injuries: assessing the burden of disease from sharps injuries to health-care at national and local levels, WHO environmental burden of disease series 11. WHO, Geneva

    Google Scholar 

  • Roxhed N, Griss P, Stemme G (2007) ‘A method for tapered deep reactive ion etching using a modi ed Bosch process’, Journal of Micromechanics and Microengineering 17(5):1087–1092

    Google Scholar 

  • Roxhed N, Patrick G, Stemme G (2008a) Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomed Microdevices 10:271–279

    Article  CAS  PubMed  Google Scholar 

  • Roxhed N, Samel B, Nordquist L, Griss P, Stemme G (2008b) Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans Biomed Eng 55:1063–1071

    Article  PubMed  Google Scholar 

  • Sato T, Okada S, Hagino K, Asakura Y, Kikkawa Y, Kojima J et al (2011) Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling. Diabetes Technol Ther 13(12):1194–1200

    Article  CAS  PubMed  Google Scholar 

  • Sieg A, Guy R, Delgado-Charro M (2004) Electroosmosis in transdermal iontophoresis: implications for noninvasive and calibration-free glucose monitoring. Biophys J 87(5):3344–3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeber B, Liepmann D (2002) Design, fabrication and testing of a MEMS syringe. Presented at the solid-state sensor. Actuator and microsystems workshop, Hilton Head, SC

    Google Scholar 

  • Sun T, Shieh H, Ching C, Yao Y, Huang S, Liu C (2010) Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring. Int J Nonacid 5:343–349

    CAS  Google Scholar 

  • Suzuki H, Tokuda T, Kobayashi K (2002) A disposable intelligent mosquito with a reversible sampling mechanism using the volume-phase transition of a gel. Sensors Actuators B Chem 83(1–3):53–59

    Article  CAS  Google Scholar 

  • Suzuki H, Tokuda T, Miyagishi T, Yoshida H, Honda N (2004) A disposable on-line microsystem for continuous sampling and monitoring of glucose. Sensors Actuators B Chem 97(1):90–97

    Article  CAS  Google Scholar 

  • Tayyaba S, Ashraf M, Afzulpurkar N (2011) Blood filtration system for patients with kidney diseases. IET Communications, Manuscript ID COM-2011-0176

    Google Scholar 

  • Teo AL, Shearwood C, Nga KC, Lu J, Moochhala S (2006) Transdermal microneedles for drug delivery applications. Mater Sci Eng B 132(1–2):151–154

    Article  CAS  Google Scholar 

  • Trzebinski J, Sharma S, Moniz A, Michelakis K, Zhang Y (2012) Microfluidic device to investigate factors affecting performance in biosensors designed for transdermal applications. Lab Chip 12(2):348–352

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya K, Jinnin S, Yamamoto H, Uetsuji Y, Nakamachi E (2010) Design and development of a biocompatible painless microneedle by the ion sputtering deposition method. Precis Eng 34(3):461–466

    Article  Google Scholar 

  • Van der Maaden K, Jiskoot W, Bouwstra J (2012) Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. doi:10.1016/j.jconrel.2012.01.042

    PubMed  Google Scholar 

  • Venugopal M, Feuvrel K, Mongin D, Bambot S, Faupel M, Panangadan A (2008) Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring. IEEE Sensors J 8(1):71–80

    Article  CAS  Google Scholar 

  • Vesper HW, Wang PM, Archibold E, Prausnitz MR, Myers GL (2006) Assessment of trueness of a glucose monitor using interstitial fluid and whole blood as specimen matrix. Diabetes Technol Ther 8:76–80

    Google Scholar 

  • Vrouwe E, Luttge R (2005) Sampling for point-of-care analysis of lithium in whole blood with chip based CE. Springer, New York

    Google Scholar 

  • Wang P, Cornwell M, Prausnitz M (2005) Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol Ther 7(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Wilke N, Mulcahy A, Ye SR, Morrissey A (2005) Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J 36:650–656

    Article  CAS  Google Scholar 

  • Windmiller J, Zhou N, Chuang M, Valdes Ramirez G, Santhosh P, Miller P (2011a) Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 136(9):1846–1851

    Article  CAS  PubMed  Google Scholar 

  • Windmiller J, Valdes Ramirez G, Zhou N, Zhou M, Miller P (2011b) Bicomponent microneedle array biosensor for minimally-invasive glutamate monitoring. Electroanalysis 23(10):2302–2309

    Article  CAS  Google Scholar 

  • Yung K, Xu Y, Kang C, Liu H, Tam K, Ko S et al (2012) Sharp tipped plastic hollow microneedle array by microinjection moulding. J Micromech Microeng 22:015016

    Article  Google Scholar 

  • Zahn J, Trebotich D, Liepmann D (2000) Microfabricated microdialysis microneedles for continuous medical monitoring. In: Proceedings of 1st annual international conference on microtechnologies in medicine and biology, pp 375–380

    Google Scholar 

  • Zahn J, Trebotich D, Liepmann D, Trebotich D, Liepmann D (2005) Microdialysis microneedles for continuous medical monitoring. Biomed Microdevices 7(1):59–69

    Article  PubMed  Google Scholar 

  • Zhang P, Jullien G (2003) Micromachined needles for microbiological sample and drug delivery system. In: Proceedings of International Conference on MEMS, NANO and Smart Systems, pp 247–250

    Google Scholar 

  • Zhang P, Jullien G (2005) Microneedle arrays for drug delivery and fluid extraction. In: Proceedings of International Conference on MEMS, NANO and Smart Systems, pp 392–395

    Google Scholar 

  • Zimmermann S, Fienbork D, Stoeber B, Flounders AW, Liepmann D (2003) A microneedle-based glucose monitor: fabricated on a wafer-level using in-device enzyme immobilization. The 12th international conference on solid state sensors, Actuators and Microsystems, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan F. Donnelly BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, T.R.R., McMillan, H., Mooney, K., Alkilani, A.Z., Donnelly, R.F. (2017). Fabrication of Microneedles. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics