Skip to main content
Log in

Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Nonelectrolyte partition coefficients (K's) and free energies of solution (ΔF l 's) in dimyristoyl lecithin liposomes and in bulk nonpolar solvents were compared. Individual substituent groups tend to have consistent effects onK, permitting the extraction of incremental free energies (δΔF), enthalpies (δΔH), and entropies (δΔS) of partition and of solution. Values of the selectivity constants and of δΔF l for the −CH2−and −OH groups in lecithin suggest that partitioned solutes are mainly located in a region slightly less hydrophobic than octanol and similar to C5H11OH in its solvent properties. Lecithin discriminates against branched solutes more than does a bulk solvent with the sames value. Below the endothermic phase-transition temperature (i.e., when the hydrocarbon tails “freeze”), ΔS and ΔH of partition increase 10-fold,K jumps down slightly, ΔS and ΔH of solution reverse in sign from negative to positive, and the Barclay-Butler constants become more positive. Partition in lecithin and in erythrocytes is similar, except for the absence of surface charge effects in lecithin. Resistance to nonelectrolyte permeation is inhomogeneously distributed through the bilayer, and the region of maximum partition does not provide the rate-limiting barrier. An appendix derives a simple general expression for the nonelectrolyte permeability of a membrane that may be asymmetrical, may have position-dependent partition coefficients and diffusion coefficients, and may have significant interfacial resistances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Butler, J. A. V. 1937. The energy and entropy of hydration of organic compoundsTrans. Faraday Soc. 33:229

    Google Scholar 

  • Butler, J. A. V., Harrower, P. 1937. The activities of some aliphatic alcohols and halides in non-polar solvents.Trans. Faraday Soc. 33:171

    Google Scholar 

  • Chapman, D., Williams, R. M., Ladbrooke, B. D. 1967. Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins).Chem. Phys. Lipids 1:445

    Google Scholar 

  • Ciani, S. M., Eisenman, G., Laprade, R., Szabo, G. 1973. Theoretical analysis of carrier-mediated electrical properties of bilayer. membranes.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 2, p. 61. Marcel Dekker, Inc., New York

    Google Scholar 

  • Cohen, B. E., Bangham, A. D. 1972. Diffusion of small non-electrolytes across liposome membranes.Nature 236:173

    PubMed  Google Scholar 

  • Collander, R. 1947. On “lipid solubility”.Acta Physiol. Scand. 13:363

    Google Scholar 

  • Collander, R. 1949. Die Verteilung organischer Verbindungen zwischen Äther und Wasser.Acta Chem. Scand. 3:717

    Google Scholar 

  • Collander, R. 1950. The distribution of organic compounds between isobutanol and water.Acta Chem. Scand. 4:1085

    Google Scholar 

  • Collander, R. 1951. The partition of organic compounds between higher alcohols and water.Acta Chem. Scand. 5:774

    Google Scholar 

  • Collander, R. 1954. The permeability ofNitella cells to non-electrolytes.Physiol. Pl. 7:420

    Google Scholar 

  • Collander, R. 1957. Die Permeabilität des Plasmalemas für Säuren.Physiol. Pl. 10:397

    Google Scholar 

  • Collander, R. 1959 Das Permeationsvermögen des Pentaerythrits verglichen mit dem des Erythrits.Physiol. Pl. 12:139

    Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969a. Molecular forces govering non-electrolyte permeation through cell membranes.Proc. Roy. Soc. B. (London) 172:273

    Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969b. Biological membranes: The physical basis of ion and non-electrolyte selectivity.Annu. Rev. Physiol. 31:581

    PubMed  Google Scholar 

  • Dix, J. A., Diamond, J. M., Kivelson, D. 1974. Translational diffusion coefficient of a spin-labeled solute in lecithin bilayer membranes.Proc. Nat. Acad. Sci. (In press)

  • Finkelstein, A., Cass, A. 1968. Permeability and electrical properties of thin lipid membranes.J. Gen. Physiol. 52:145s

    Google Scholar 

  • Foster, M., McLaughlin, S. 1974. Complexes between uncouplers of oxidative phosphorylation17:155

  • Frank, H. S., Evans, M. W. 1945. Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes.J. Chem. Phys. 13:507

    Google Scholar 

  • Franks, F. 1965. Hydrophobic hydration and the effect of hydrogen bonding solutes on the structure of water.Ann. N. Y. Acad. Sci. 125:277

    Google Scholar 

  • Gallucci, E., Micelli, S., Lippe, C. 1971. Non-electrolyte permeability across thin lipid membranes.Arch. Int. Physiol. Biochim. 79:881

    PubMed  Google Scholar 

  • Hall, J. E., Mead, C. A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75

    Google Scholar 

  • Hildebrand, J. H., Scott, R. L. 1964. The Solubility of Non-electrolytes. Dover Publications Inc., New York

    Google Scholar 

  • Hingson, D. J., Diamond, J. M. 1972. Comparison of nonelectrolyte permeability patterns in several epithelia.J. Membrane Biol. 10:93

    Google Scholar 

  • Hubbell W. J., mcConnell, H. M. 1971. Molecular motion in spin-labeled phospholipids and membranes.J. Amer. Chem. Soc. 93:314

    Google Scholar 

  • Katz, Y., Diamond, J. M. 1974a. A method for measuring nonelectrolyte partition coefficients between liposomes and water.J. Membrane Biol. 17:69

    Google Scholar 

  • Katz, Y., Diamond, J. M. 1974b. Nonsolvent water in liposomes.J. Membrane. Biol. 17:87

    Google Scholar 

  • Katz, Y., Diamond, J. M. 1974c. Thermodynamic constants for nonelectrolyte partition between dimyristoyl lecithin and water.J. Membrane Biol. 17:101

    Google Scholar 

  • Krishnan, C. V., Friedman, H. L. 1971. Solvation enthalpies of hydrocarbons and normal alcohols in highly polar solvents.J. Phys. Chem. 75:3598

    Google Scholar 

  • Kwant, W. O., Seeman, P. 1969. The membrane concentration of a local anesthetic (Chlorpormazine).Biochim. Biophys. Acta 183:530

    PubMed  Google Scholar 

  • Lange, Y., Gary-Bobo, C. M., Solomon, A.K, 1974. Nonelectrolyte diffusion through lecithin-water lamellar phases and red cell membranes.J. Gen. Physiol. (In Press)

  • Leo, A., Hansch, C., Church, C. 1969. Comparison of parameters currently used in the study of structure-activity relationships.J. Med. Chem. 12:766

    PubMed  Google Scholar 

  • Levine, Y. K., Birdsall, N. J. M., Lee, A. G., Metcalfe, J. C. 1972.13C nuclear magnetic resonance relaxation measurements of synthetic lecithins and the effect of spin-labeled lipids.Biochemistry 11:1416

    PubMed  Google Scholar 

  • Lieb, W. R., Stein, W. D. 1971. The molecular basis of simple diffusion within biological membranes.In: Currents Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. p. 1. Academic Press Inc., New York.

    Google Scholar 

  • Lippe, C. 1969. Urea and thiourea permeabilities of phospholipid and cholesterol bilayer membranes.J. Mol. Biol. 39:669

    PubMed  Google Scholar 

  • Machleidt, H., Roth, S., Seeman, P. 1972. The hydrophobic expansion of erythrocyte membranes by the phenol anesthetics.Biochim. Biophys. Acta 255:178

    PubMed  Google Scholar 

  • McConnell, H. M., McFarland, B. G. 1970. The flexibility gradient in biological membranes.Quart. Rev. Biophys. 3:91

    Google Scholar 

  • McLaughlin, S. G. A., Szabo, G., Eisenman, G., Ciani, S. M. 1970. Surface charge and the conductance of phospholipid membranes.Proc. Nat. Acad. Sci. 67:1268

    PubMed  Google Scholar 

  • Metcalfe, J. C., Seeman, P., Burgen, A. S. V 1968. The proton relaxation of benzyl alcohol in eryhrocyte membranes.Mol. Pharmocol. 4:87

    Google Scholar 

  • Oura, E., Suomalianen, H., Collander, R. 1959. Die Permeabilität de Hefezellen für Säuren,Physiol. Pl. 12:534

    Google Scholar 

  • Overton, E. 1896. Ueber die osmotischen Eigenschaften der Zellen in ihrer Bedeutung für die Toxokologie und Pharmakologie.Vjschr. Naturforsch. Ges. Zürich 41:383

    Google Scholar 

  • Overton, E. 1899. Ueber die allgemeinen osmotischen Eigenschaften der Zelle, Ihre vermutlichen Urschen und ihre Bedeutung für die Physiologie.Vjschr. Naturforsch. Ges. Zürich 44:88

    Google Scholar 

  • Overton, E. 1902. Beiträge zur allgemeinen Muskel- und Nervenphysiologie.Pflüg. Arch. Ges. Physiol. 92:115

    Google Scholar 

  • Rigaud, J.-L., Gary-Bobo, C. M., Lange, Y. 1972. Diffusion processes in lipid-water lamellar phases.Biochim. Biophys. Acta 266:72

    Google Scholar 

  • Roth, S., Seeman, P. 1972. The membrane concentratons of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not.Biochim. Biophys. Acta 255:207

    PubMed  Google Scholar 

  • Roth, S., Seeman, P., Åkerman, S. B. A., Chau-Wong, M. 1972. The action and adsorption of local anesthetic enantiomers on erythrocyte and synaptosome membranes.Biochim. Biophys. Acta 255:199

    Google Scholar 

  • Schiff, E. R., Small, N. C., Dietschy, J. M. 1972. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon.J. Clin. Invest. 51:1351

    PubMed  Google Scholar 

  • Seeman, P. 1969. Temperature depedence of erythrocyte membrane expansion by alcohol anesthetics. Possible support for the partitiion theory of anesthesia.Biochim. Biophys. Acta 183:520

    PubMed  Google Scholar 

  • Seeman, P., Roth, S., Schneider, H. 1971. The membrane concentrations of alcohol anesthetics.Biochim. Biophys. Acta 225:171

    PubMed  Google Scholar 

  • Smulders, A. P., Wright, E. M. 1971. The magnitude of nonelectrolyte selectivity in the gallbladder epithelium.J. Membrane Biol. 5:297

    Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycinmediated ion transport through thin lipid membranes.Biophys. J. 11:981

    PubMed  Google Scholar 

  • Szabo, G., Eisenman, G., Laprade, R., Ciani, S., Krasne, S. 1973. Experimentally observed effects of carries on the electrical properties of bilayers — equilibrium domain.In: Membranes — A Series of Advances, G. Eisenman, editor. Vol. 2. p. 179 Marcel Dekker, New York.

    Google Scholar 

  • Vreeman, H. J. 1966. Permeability of thin phospholipid films. III.Koninkl. Ned. Acad. Wet., Ser. B 69:564

    Google Scholar 

  • Wright, E. M., Diamond, J. M. 1969. Patterns of non-electrolyte permeability.Proc. Roy. Soc. B. (London) 172:227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamond, J.M., Katz, Y. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J. Membrain Biol. 17, 121–154 (1974). https://doi.org/10.1007/BF01870176

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870176

Keywords

Navigation