Skip to main content

Advertisement

Log in

Development of New Localized Drug Delivery System Based on Ceftriaxone-Sulbactam Composite Drug Impregnated Porous Hydroxyapatite: A Systematic Approach for In Vitro and In Vivo Animal Trial

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Present investigation deals with an extensive approach incorporating in vitro and in vivo experimentation to treat chronic osteomyelitis, using hydroxyapatite porous scaffolds.

Materials and Methods

Hydroxyapatite was synthesized in the laboratory by wet chemical method, different porous scaffolds have been fabricated. In vitro studies include variation of porosity with interconnectivity, pore-drug interfacial studies by SEM-EDAX and drug elution studies (by HPLC) both in contact with PBS and SBF at ~37°C. In vivo trials were based on experimental osteomyelitis in rabbit model induced in tibia by Staphylococcus aureus. Characterizations included observation of histopathology, radiology and estimation of drug in both bone and serum for 42 days by HPLC method and subsequent bone-biomaterial interface by SEM.

Results

It was established that lower pore percentage with a distribution of mainly micro-pores were found to be superior over the higher pore percentage both in vitro and in vivo. The criteria was matched with the 50N50H samples which had 50–55% porosity with an average pore size ~110 μm, having higher interconnectivity (10–100 μm), moderately high adsorption efficiency (~50%) when loaded with CFS (drug combinations consisting of irreversible b-lactamase inhibitor and b-lactam antibiotic). CFS release from HAp implants were faster in PBS than SBF. Further, both the results of in vitro and in vivo drug elution after 42 days showed release higher than minimum inhibitory concentration of CFS against Staphylococcus aureus. In vivo studies also proved the superiority of CFS loaded HAp implants than parenteral group based on eradication of infection and new bone formation.

Conclusions

HAp based porous scaffold loaded with CFS and designed porosity (in terms of micro- and macro-porosity, interconnectivity) was found to be an ideal delivery system which could locally, sustainably release the composite antibiotic in reliable manner both in terms of in vitro drug elution behaviour in contact with SBF and in vivo animal trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing and Materials

AUC:

Area under the curve

CFA:

Colony-forming unit

CFS:

Combination of CFT and SUL drug

CFT:

Ceftriaxone sodium

FESEM:

Field emission scanning electron microscopy

FTIR:

Fourier-transformed infrared spectroscopy

HAp:

Hydroxyapatite

HPLC:

High performance liquid chromatography

MIC:

Minimum inhibitory concentration

PBS:

Phosphate buffered saline

PMMA:

Poly-methyl methacrylate

RBC:

Red blood cell

SBF:

Simulated body fluid

SEM-EDAX:

Scanning electron microscopy-Energy dispersive analysis of X-ray

SUL:

Sulbactam sodium

XRD:

X-ray diffraction

REFERENCES

  1. Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D. Local antibiotic delivery systems for the treatment of osteomyelitis—a review. Mater Sci Engg C. 2009;29:2478–85.

    Article  CAS  Google Scholar 

  2. Soundrapandian C, Datta S, Sa B. Drug-eluting implants for osteomyelitis. Crit Rev Ther Drug Carrier Syst. 2007;24:493–545.

    PubMed  CAS  Google Scholar 

  3. Rao N, Lipsky BA. Optimising antimicrobial therapy in diabetic foot infections. Drugs. 2007;67:195–214.

    Article  PubMed  CAS  Google Scholar 

  4. Conterno LO, da Silva Filho CR. Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst Rev:CD004439 (2009).

  5. Houghton TJ, Tanaka KS, Kang T, Dietrich E, Lafontaine Y, Delorme D et al. Linking bisphosphonates to the free amino groups in fluoroquinolones: preparation of osteotropic prodrugs for the prevention of osteomyelitis. J Med Chem. 2008;51:6955–69.

    Article  PubMed  CAS  Google Scholar 

  6. Soundrapandian C, Sa B, Datta S. Organic–inorganic composites for bone drug delivery. AAPS PharmSciTech (2009).

  7. Walenkamp GH, Kleijn LL, de Leeuw M. Osteomyelitis treated with gentamicin-PMMA beads: 100 patients followed for 1–12 years. Acta Orthop Scand. 1998;69:518–22.

    Article  PubMed  CAS  Google Scholar 

  8. Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials. 2003;24:1829–31.

    Article  PubMed  CAS  Google Scholar 

  9. Kilian O, Hossain H, Flesch I, Sommer U, Nolting H, Chakraborty T et al. Elution kinetics, antimicrobial efficacy, and degradation and microvasculature of a new gentamicin-loaded collagen fleece. J Biomed Mater Res B Appl Biomater. 2009;90:210–22.

    PubMed  Google Scholar 

  10. Colilla M, Manzano M, Vallet-Regi M. Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomedicine. 2008;3:403–14.

    PubMed  CAS  Google Scholar 

  11. Nandi SK, Kundu B, Ghosh SK, Mandal TK, Datta S, De DK et al. Cefuroxime-impregnated calcium phosphates as an implantable delivery system in experimental osteomyelitis. Ceram Int. 2009;35:1367–76.

    Article  CAS  Google Scholar 

  12. Bose S, Saha SK. Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem Mater. 2003;15:4464–9.

    Article  CAS  Google Scholar 

  13. Wu Y, Bose S. Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir. 2005;21:3232–4.

    Article  PubMed  CAS  Google Scholar 

  14. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108:4754–83.

    Article  PubMed  CAS  Google Scholar 

  15. Al-Sokanee ZN, Toabi AA, Al-Assadi MJ, Alassadi EA. The drug release study of ceftriaxone from porous hydroxyapatite scaffolds. AAPS PharmSciTech. 2009;10:772–9.

    Article  PubMed  CAS  Google Scholar 

  16. Bose S, Banerjee A, Dasgupta S, Bandyopadhyay A. Synthesis, processing, mechanical and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites. J Am Ceram Soc. 2009;92:323–30.

    Article  CAS  Google Scholar 

  17. Sedrakyan S, Zhou ZY, Perin L, Leach K, Mooney D, Kim TH. Tissue engineering of a small hand phalanx with a porously casted polylactic acid-polyglycolic acid copolymer. Tissue Eng. 2006;12:2675–83.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshikawa H, Tamai N, Murase T, Myoui A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface. 2009;6 Suppl 3:S341–348.

    PubMed  CAS  Google Scholar 

  19. Xue W, Bandyopadhyay A, Bose S. Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering. J Biomed Mater Res Part B Appl Biomater. 2009;91:831–8.

    Article  PubMed  CAS  Google Scholar 

  20. Xue W, Bandyopadhyay A, Bose S. Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Acta Biomater. 2009;5:1686–96.

    Article  PubMed  CAS  Google Scholar 

  21. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27:3230–7.

    Article  PubMed  CAS  Google Scholar 

  22. Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F et al. Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromolecules. 2009;10:1575–83.

    Article  PubMed  CAS  Google Scholar 

  23. Oudadesse H, Derrien AC, Lucas-Girot A. Statistical experimental design for studies of porosity and compressive strength in composite materials applied as biomaterials. Eur Phys J Appl Phys. 2005;31:217–23.

    Article  CAS  Google Scholar 

  24. Chanda A, Singha Oy R, Xue W, Bose S, Bandyopadhyay A. Bone cell-materials interaction on alumina ceramics with different grain sizes. Mater Sci Engg C. 2009;29:1201–6.

    Article  CAS  Google Scholar 

  25. Bush K, Mobashery S. How beta-lactamases have driven pharmaceutical drug discovery. From mechanistic knowledge to clinical circumvention. Adv Exp Med Biol. 1998;456:71–98.

    PubMed  CAS  Google Scholar 

  26. Bush K. The impact of beta-lactamases on the development of novel antimicrobial agents. Curr Opin Investig Drugs. 2002;3:1284–90.

    PubMed  CAS  Google Scholar 

  27. Caron F, Gutmann L, Bure A, Pangon B, Vallois JM, Pechinot A et al. Ceftriaxone-sulbactam combination in rabbit endocarditis caused by a strain of Klebsiella pneumoniae producing extended-broad-spectrum TEM-3 beta-lactamase. Antimicrob Agents Chemother. 1990;34:2070–4.

    PubMed  CAS  Google Scholar 

  28. Foulds G, Stankewich JP, Marshall DC, O’Brien MM, Hayes SL, Weidler DJ et al. Pharmacokinetics of sulbactam in humans. Antimicrob Agents Chemother. 1983;23:692–9.

    PubMed  CAS  Google Scholar 

  29. Sinha MK, Sen PS, Basu D, Chattopadhyay S, Basu MK. An improved process for the synthesis of hydroxyapatite powder useful for biomedical applications. In CGCRI (ed.), India, 1998.

  30. Landi E, Tampieri A, Celotti G, Sprio S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20:2377–87.

    Article  CAS  Google Scholar 

  31. D. Basuand M.K. Sinha. A process for the production of improved porous ocular implants and improved porous ocular implants produced thereby. In CGCRI (ed.), India, 2006.

  32. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:721–34.

    Article  PubMed  CAS  Google Scholar 

  33. Norden CW. Experimental osteomyelitis. I. A description of the model. J Infect Dis. 1970;122:410–8.

    PubMed  CAS  Google Scholar 

  34. Weng W, Baptista JL. Sol-gel derived porous hydroxyapatite coatings. J Mater Sci. 1998;9:159–63.

    CAS  Google Scholar 

  35. Choi D, Marra KG, Kumta PN. Chemical synthesis of hydroxyapatite/poly(e-caprolactone) composites. Mater Res Bull. 2004;39:417–32.

    Article  CAS  Google Scholar 

  36. Narasaraju TSB, Phebe DE. Some physico-chemical aspects of hydroxylapatite. J Mater Sci. 1996;31:1–21.

    Article  CAS  Google Scholar 

  37. Suetsugu Y, Shimoya I, Tanaka J. Configuration of carbonate ions in apatite structure determined by polarized infrared spectroscopy. J Am Ceram Soc. 1998;81:746–8.

    Article  CAS  Google Scholar 

  38. Rokusek D, Davitt C, Bandyopadhyay A, Bose S, Hosick HL. Interaction of human osteoblasts with bioinert and bioactive ceramic substrates. J Biomed Mater Res. 2005;75:588–94.

    Article  CAS  Google Scholar 

  39. Banerjee A, Bandyopadhyay A, Bose S. Hydroxyapatite nanopowders: synthesis, densification and cell-materials interaction. Mater Sci Engg C. 2007;27:729–35.

    Article  CAS  Google Scholar 

  40. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release. 2006;113:102–10.

    Article  PubMed  CAS  Google Scholar 

  41. Krajewski A, Ravaglioli A, Roncari E, Pinasco P, Montanari L. Porous ceramic bodies for drug delivery. J Mater Sci. 2000;11:763–71.

    CAS  Google Scholar 

  42. Hasegawa M, Sudo A, Komlev VS, Barinov SM, Uchida A. High release of antibiotic from a novel hydroxyapatite with bimodal pore size distribution. J Biomed Mater Res B Appl Biomater. 2004;70:332–9.

    Article  PubMed  CAS  Google Scholar 

  43. Sanchez E, Baro M, Soriano I, Perera A, Evora C. In vivoin vitro study of biodegradable and osteointegrable gentamicin bone implants. Eur J Pharm Biopharm. 2001;52:151–8.

    Article  PubMed  CAS  Google Scholar 

  44. Tampieri A, Celotti G, Sprio S, Mingazzini C. Characteristics of synthetic hydroxyapatites and attempts to improve their thermal stability. Mater Chem Phys. 2000;64:54–61.

    Article  CAS  Google Scholar 

  45. Netz DJ, Sepulveda P, Pandolfelli VC, Spadaro AC, Alencastre JB, Bentley MV et al. Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system. Int J Pharm. 2001;213:117–25.

    Article  PubMed  CAS  Google Scholar 

  46. Itokazu M, Yang W, Aoki T, Ohara A, Kato N. Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing. Biomaterials. 1998;19:817–9.

    Article  PubMed  CAS  Google Scholar 

  47. Pham HH, Luo P, Genin F, Dash AK. Synthesis and characterization of hydroxyapatite-ciprofloxacin delivery systems by precipitation and spray drying technique. AAPS PharmSciTech. 2002;3:E1.

    Article  PubMed  Google Scholar 

  48. Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127–38.

    PubMed  CAS  Google Scholar 

  49. Kuhne JH, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand. 1994;65:246–52.

    Article  PubMed  CAS  Google Scholar 

  50. Rodriguez-Lorenzo LM, Vallet-Regi M, Ferreira JM. Colloidal processing of hydroxyapatite. Biomaterials. 2001;22:1847–52.

    Article  PubMed  CAS  Google Scholar 

  51. Bodhak S, Bose S, Bandyopadhyay A. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater. 2009;5:2178–88.

    Article  PubMed  CAS  Google Scholar 

  52. Bodhak S, Bose S, Bandyopadhyay A. Electrically polarized HAp-coated Ti: in vitro bone cell–material interactions. Acta Biomater. 2010;6:641–51.

    Article  PubMed  CAS  Google Scholar 

  53. Vallet-Regi M, Balas F, Colilla M, Manzano M. Drug confinement and delivery in ceramic implants. Drug Metab Lett. 2007;1:37–40.

    Article  PubMed  CAS  Google Scholar 

  54. Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM. Revisiting silica based ordered mesoporous materials: medical applications. J Mater Chem. 2006;16:26–31.

    Article  CAS  Google Scholar 

  55. Lebugle A, Rodrigues A, Bonnevialle P, Voigt JJ, Canal P, Rodriguez F. Study of implantable calcium phosphate systems for the slow release of methotrexate. Biomaterials. 2002;23:3517–22.

    Article  PubMed  CAS  Google Scholar 

  56. Burgos AE, Belchior JC, Sinisterra RD. Controlled release of rhodium (II) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix. Biomaterials. 2002;23:2519–26.

    Article  PubMed  CAS  Google Scholar 

  57. Stigter M, Bezemer J, de Groot K, Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release. 2004;99:127–37.

    Article  PubMed  CAS  Google Scholar 

  58. Rai B, Teoh SH, Ho KH. An in vitro evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma. J Control Release. 2005;107:330–42.

    Article  PubMed  CAS  Google Scholar 

  59. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  PubMed  CAS  Google Scholar 

  60. Joosten U, Joist A, Frebel T, Brandt B, Diederichs S, von Eiff C. Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis: studies in vitro and in vivo. Biomaterials. 2004;25:4287–95.

    Article  PubMed  CAS  Google Scholar 

  61. Korkusuz F, Korkusuz P, Eksioglu F, Gursel I, Hasirci V. In vivo response to biodegradable controlled antibiotic release systems. J Biomed Mater Res. 2001;55:217–28.

    Article  PubMed  CAS  Google Scholar 

  62. Girschick HJ, Zimmer C, Klaus G, Darge K, Dick A, Morbach H. Chronic recurrent multifocal osteomyelitis: what is it and how should it be treated? Nat Clin Pract. 2007;3:733–8.

    Google Scholar 

  63. Shrivastava SM, Saurabh S, Rai D, Dwivedi VK, Chaudhary M. In vitro microbial efficacy of sulbactomax: a novel fixed dose combination of ceftriaxone sulbactam and ceftriaxone alone. Curr Drug Ther. 2009;4:73–7.

    Article  CAS  Google Scholar 

  64. Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T et al. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res. 2002;59:110–7.

    Article  PubMed  CAS  Google Scholar 

  65. Castro C, Sanchez E, Delgado A, Soriano I, Nunez P, Baro M et al. Ciprofloxacin implants for bone infection. In vitroin vivo characterization. J Control Release. 2003;93:341–54.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors wish to express their sincere thanks for the financial support by Department of Science and Technology, India [T.1 (7)/TIFA/2006-CGCRI] and the Director, CGCRI, India and Vice Chancellor, West Bengal University of Animal and Fishery Sciences, Kolkata, India for their generous and kind support to this work. All the personnel related to the characterization of the materials are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit K. Nandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, B., Soundrapandian, C., Nandi, S.K. et al. Development of New Localized Drug Delivery System Based on Ceftriaxone-Sulbactam Composite Drug Impregnated Porous Hydroxyapatite: A Systematic Approach for In Vitro and In Vivo Animal Trial. Pharm Res 27, 1659–1676 (2010). https://doi.org/10.1007/s11095-010-0166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0166-y

KEY WORDS

Navigation