Skip to main content
Log in

The Role of the Intestinal Lymphatics in the Absorption of Two Highly Lipophilic Cholesterol Ester Transfer Protein Inhibitors (CP524,515 and CP532,623)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the potential role of intestinal lymphatic transport in the absorption and oral bioavailability of members of an emerging class of anti-atherosclerosis drugs (CETP inhibitors). CP524,515 and CP532,623 are structurally related with eLogD7.4 >5; however, only CP524,515 (and not CP532,623) had sufficient solubility (>50 mg/g) in long-chain triglyceride (LCT) to be considered likely to be lymphatically transported.

Methods

CP524,515 and CP532,623 were administered intravenously and orally to fasted or fed lymph-cannulated or non-cannulated dogs. Oral bioavailability and lymphatic transport of drug (and triglyceride) was subsequently quantified.

Results

Both CETP inhibitors were substantially transported into the lymphatic system (>25% dose) in fed and fasted dogs. Food enhanced oral bioavailability (from 45 to 83% and 44 to 58% for CP524,515 and CP532,623, respectively) and the proportion of the absorbed dose transported via the lymph (from 61 to 86% and from 68 to 83%, respectively). Lymphatic triglyceride transport was significantly lower in fed dogs administered CP532,623.

Conclusion

Intestinal lymphatic transport is the major absorption pathway for CP524,515 and CP532,623, suggesting that a LCT solubility >50 mg/g is not an absolute requirement for lymphatic transport. The effect of CP532,623 on intestinal lipid transport may suggest a role in the activity/toxicity profiles of CETP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CETP:

cholesterol ester transfer protein

CM:

chylomicron

HDL:

high density lipoprotein

MTP:

microsomal TG transfer protein

PLTP:

phospholipid transfer protein

SMEDDS:

self micro-emulsifying drug delivery system

TBME:

tert-butyl methyl ether

TG:

triglyceride

VLDL:

very low density lipoprotein

LCT:

long chain triglyceride

REFERENCES

  1. Shah PK. Inhibition of CETP as a novel therapeutic strategy for reducing the risk of atherosclerotic disease. Eur Heart J. 2007;28:5–12.

    Article  PubMed  CAS  Google Scholar 

  2. El Harchaoui K, van der Steeg WA, Stroes ES, Kastelein JJ. The role of CETP inhibition in dyslipidemia. Curr Atheroscler Rep. 2007;9:125–33.

    Article  PubMed  Google Scholar 

  3. Boekholdt SM, Kuivenhoven JA, Hovingh GK, Jukema JW, Kastelein JJ, van Tol A. CETP gene variation: relation to lipid parameters and cardiovascular risk. Curr Opin Lipidol. 2004;15:393–8.

    Article  PubMed  CAS  Google Scholar 

  4. Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart RP, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 2008;299:2777–88.

    Article  PubMed  CAS  Google Scholar 

  5. de Grooth GJ, Kuivenhoven JA, Stalenhoef AF, de Graaf J, Zwinderman AH, Posma JL, et al. Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans: a randomized phase II dose-response study. Circulation 2002;105:2159–65.

    Article  PubMed  CAS  Google Scholar 

  6. Klerkx AH, El Harchaoui K, van der Steeg WA, Boekholdt SM, Stroes ES, Kastelein JJ, et al. Cholesteryl ester transfer protein (CETP) inhibition beyond raising high-density lipoprotein cholesterol levels: pathways by which modulation of CETP activity may alter atherogenesis. Arterioscler Thromb Vasc Biol. 2006;26:706–15.

    Article  PubMed  CAS  Google Scholar 

  7. Kuivenhoven JA, de Grooth GJ, Kawamura H, Klerkx AH, Wilhelm F, Trip MD, et al. Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in type II dyslipidemia. Am J Cardiol. 2005;95:1085–8.

    Article  PubMed  CAS  Google Scholar 

  8. Howes LG, Kostner K. The withdrawal of torcetrapib from drug development: implications for the future of drugs that alter HDL metabolism. Expert Opin Investig Drugs. 2007;16:1509–16.

    Article  PubMed  CAS  Google Scholar 

  9. Blasi E, Bamberger M, Knight D, Engwall M, Wolk R, Winter S, et al. Effects of CP-532, 623 and torcetrapib, cholesteryl ester transfer protein inhibitors, on arterial blood pressure. J Cardiovasc Pharmacol. 2009;53:507–16.

    Article  PubMed  CAS  Google Scholar 

  10. Clark RW, Ruggeri RB, Cunningham D, Bamberger MJ. Description of the torcetrapib series of cholesteryl ester transfer protein inhibitors, including mechanism of action. J Lipid Res. 2006;47:537–52.

    Article  PubMed  CAS  Google Scholar 

  11. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    Article  PubMed  CAS  Google Scholar 

  12. Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60:625–37.

    Article  PubMed  CAS  Google Scholar 

  13. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29:278–87.

    Article  PubMed  CAS  Google Scholar 

  14. Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88:1058–66.

    Article  PubMed  CAS  Google Scholar 

  15. Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60:702–16.

    Article  PubMed  CAS  Google Scholar 

  16. Khoo S, Edwards GA, Porter CJH, Charman WN. A conscious dog model for assessing the absorption, enterocyte-based metabolism, and intestinal lymphatic transport of halofantrine. J Pharm Sci. 2001;90:1599–607.

    Article  PubMed  CAS  Google Scholar 

  17. Khoo SM, Shackleford DM, Porter CJ, Edwards GA, Charman WN. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm Res. 2003;20:1460–5.

    Article  PubMed  CAS  Google Scholar 

  18. Phan CT, Tso P. Intestinal lipid absorption and transport. Front Biosci. 2001;6:D299–319.

    Article  PubMed  CAS  Google Scholar 

  19. Charman WN, Stella VJ. Estimating the maximum potential for intestinal lymphatic transport of lipophilic drug molecules. Int J Pharm. 1986;34:175–8.

    Article  CAS  Google Scholar 

  20. Holm R, Hoest J. Successful in silico predicting of intestinal lymphatic transfer. Int J Pharm. 2004;272:189–93.

    Article  PubMed  CAS  Google Scholar 

  21. Gershkovich P, Hoffman A. Uptake of lipophilic drugs by plasma derived isolated chylomicrons: linear correlation with intestinal lymphatic bioavailability. Eur J Pharm Sci. 2005;26:394–404.

    Article  PubMed  CAS  Google Scholar 

  22. Gershkovich P, Fanous J, Qadri B, Yacovan A, Amselem S, Hoffman A. The role of molecular physicochemical properties and apolipoproteins in association of drugs with triglyceride-rich lipoproteins: in-silico prediction of uptake by chylomicrons. J Pharm Pharmacol. 2009;61:31–9.

    Article  PubMed  CAS  Google Scholar 

  23. Wasan KM, Brocks DR, Lee SD, Sachs-Barrable K, Thornton SJ. Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov. 2008;7:84–99.

    Article  PubMed  CAS  Google Scholar 

  24. Porter CJH, Charman WN. Intestinal lymphatic transport: an update. Adv Drug Deliv Rev. 2001;50:61–80.

    Article  PubMed  CAS  Google Scholar 

  25. Lombardo F, Shalaeva MY, Tupper KA, Gao F. ElogD(oct): a tool for lipophilicity determination in drug discovery. 2. Basic and neutral compounds. J Med Chem. 2001;44:2490–7.

    Article  PubMed  CAS  Google Scholar 

  26. Donovan SF, Pescatore MC. Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly(vinyl alcohol) high-performance liquid chromatography columns. J Chromatogr A. 2002;952:47–61.

    Article  PubMed  CAS  Google Scholar 

  27. Edwards GA, Porter CJ, Caliph SM, Khoo SM, Charman WN. Animal models for the study of intestinal lymphatic drug transport. Adv Drug Deliv Rev. 2001;50:45–60.

    Article  PubMed  CAS  Google Scholar 

  28. Shackleford DM, Faassen WA, Houwing N, Lass H, Edwards GA, Porter CJ, et al. Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. J Pharmacol Exp Ther. 2003;306:925–33.

    Article  PubMed  CAS  Google Scholar 

  29. Rane SS, Anderson BD. What determines drug solubility in lipid vehicles: is it predictable? Adv Drug Deliv Rev. 2008;60:638–56.

    Article  PubMed  CAS  Google Scholar 

  30. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.

    Article  PubMed  CAS  Google Scholar 

  31. Khoo S, Humberstone AJ, Porter CJH, Edwards GA, Charman WN. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int J Pharm. 1998;167:155–64.

    Article  CAS  Google Scholar 

  32. Porter CJ, Kaukonen AM, Boyd BJ, Edwards GA, Charman WN. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res. 2004;21:1405–12.

    Article  PubMed  CAS  Google Scholar 

  33. Grove M, Nielsen JL, Pedersen GP, Mullertz A. Bioavailability of seocalcitol IV: evaluation of lymphatic transport in conscious rats. Pharm Res. 2006;23:2681–8.

    Article  PubMed  CAS  Google Scholar 

  34. Griffin BT, O’Driscoll CM. A comparison of intestinal lymphatic transport and systemic bioavailability of saquinavir from three lipid-based formulations in the anaesthetised rat model. J Pharm Pharmacol. 2006;58:917–25.

    Article  PubMed  CAS  Google Scholar 

  35. Gershkovich P, Qadri B, Yacovan A, Amselem S, Hoffman A. Different impacts of intestinal lymphatic transport on the oral bioavailability of structurally similar synthetic lipophilic cannabinoids: dexanabinol and PRS-211, 220. Eur J Pharm Sci. 2007;31:298–305.

    Article  PubMed  CAS  Google Scholar 

  36. Charman WN, Stella VJ. Lymphatic transport of drugs. Boca Raton: CRC; 1992.

    Google Scholar 

  37. Trevaskis NL, Porter CJ, Charman WN. The lymph lipid precursor pool is a key determinant of intestinal lymphatic drug transport. J Pharmacol Exp Ther. 2006;316:881–91.

    Article  PubMed  CAS  Google Scholar 

  38. Inazu A, Nakajima K, Nakano T, Niimi M, Kawashiri MA, Nohara A, et al. Decreased post-prandial triglyceride response and diminished remnant lipoprotein formation in cholesteryl ester transfer protein (CETP) deficiency. Atherosclerosis 2008;196:953–7.

    Article  PubMed  CAS  Google Scholar 

  39. Guerin M, Le Goff W, Duchene E, Julia Z, Nguyen T, Thuren T, et al. Inhibition of CETP by torcetrapib attenuates the atherogenicity of postprandial TG-rich lipoproteins in type IIB hyperlipidemia. Arterioscler Thromb Vasc Biol. 2008;28:148–54.

    Article  PubMed  CAS  Google Scholar 

  40. Millar JS, Brousseau ME, Diffenderfer MR, Barrett PH, Welty FK, Faruqi A, et al. Effects of the cholesteryl ester transfer protein inhibitor torcetrapib on apolipoprotein B100 metabolism in humans. Arterioscler Thromb Vasc Biol. 2006;26:1350–6.

    Article  PubMed  CAS  Google Scholar 

  41. Guyard-Dangremont V, Desrumaux C, Gambert P, Lallemant C, Lagrost L. Phospholipid and cholesteryl ester transfer activities in plasma from 14 vertebrate species. Relation to atherogenesis susceptibility. Comp Biochem Physiol B Biochem Mol Biol. 1998;120:517–25.

    Article  PubMed  CAS  Google Scholar 

  42. Tsutsumi K, Hagi A, Inoue Y. The relationship between plasma high density lipoprotein cholesterol levels and cholesteryl ester transfer protein activity in six species of healthy experimental animals. Biol Pharm Bull. 2001;24:579–81.

    Article  PubMed  CAS  Google Scholar 

  43. Tall AR. Plasma cholesteryl ester transfer protein. J Lipid Res. 1993;34:1255–74.

    PubMed  CAS  Google Scholar 

  44. Alonso AL, Zentella-Dehesa A, Mas-Oliva J. Characterization of a naturally occurring new version of the cholesterol ester transfer protein (CETP) from small intestine. Mol Cell Biochem. 2003;245:173–82.

    Article  PubMed  CAS  Google Scholar 

  45. Hussain MM. A proposed model for the assembly of chylomicrons. Atherosclerosis 2000;148:1–15.

    Article  PubMed  CAS  Google Scholar 

  46. Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res. 2003;44:22–32.

    Article  PubMed  CAS  Google Scholar 

  47. Cartwright IJ, Plonne D, Higgins JA. Intracellular events in the assembly of chylomicrons in rabbit enterocytes. J Lipid Res. 2000;41:1728–39.

    PubMed  CAS  Google Scholar 

  48. Beamer LJ. Structure of human BPI (bactericidal/permeability-increasing protein) and implications for related proteins. Biochem Soc Trans. 2003;31:791–4.

    Article  PubMed  CAS  Google Scholar 

  49. Beamer LJ, Fischer D, Eisenberg D. Detecting distant relatives of mammalian LPS-binding and lipid transport proteins. Protein Sci. 1998;7:1643–6.

    Article  PubMed  CAS  Google Scholar 

  50. Qiu X, Mistry A, Ammirati MJ, Chrunyk BA, Clark RW, Cong Y, et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat Struct Mol Biol. 2007;14:106–13.

    Article  PubMed  CAS  Google Scholar 

  51. Jiang XC, Li Z, Liu R, Yang XP, Pan M, Lagrost L, et al. Phospholipid transfer protein deficiency impairs apolipoprotein-B secretion from hepatocytes by stimulating a proteolytic pathway through a relative deficiency of vitamin E and an increase in intracellular oxidants. J Biol Chem. 2005;280:18336–40.

    Article  PubMed  CAS  Google Scholar 

  52. Lie J, de Crom R, van Gent T, van Haperen R, Scheek L, Lankhuizen I, et al. Elevation of plasma phospholipid transfer protein in transgenic mice increases VLDL secretion. J Lipid Res. 2002;43:1875–80.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank Pfizer Global Research and Development (Groton, CT) for financial support and Michael Campbell and Daniel Gregg from the Centre for Drug Candidate Optimisation (CDCO), Monash Institute of Pharmaceutical Sciences, Parkville, Australia for the determination of Elog D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. H. Porter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevaskis, N.L., McEvoy, C.L., McIntosh, M.P. et al. The Role of the Intestinal Lymphatics in the Absorption of Two Highly Lipophilic Cholesterol Ester Transfer Protein Inhibitors (CP524,515 and CP532,623). Pharm Res 27, 878–893 (2010). https://doi.org/10.1007/s11095-010-0083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0083-0

KEY WORDS

Navigation