Skip to main content

Advertisement

Log in

Lymphatic Transport of Drugs after Intestinal Absorption: Impact of Drug Formulation and Physicochemical Properties

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To provide a comprehensive and up-to-date overview focusing on the extent of lymphatic transport of drugs following intestinal absorption and to summarize available data on the impact of molecular weight, lipophilicity, formulation and prandial state.

Methods

Literature was searched for in vivo studies quantifying extent of lymphatic transport of drugs after enteral dosing. Pharmacokinetic data were extracted and summarized. Influence of molecular weight, log P, formulation and prandial state was analyzed using relative bioavailability via lymph (FRL) as the parameter for comparison. The methods and animal models used in the studies were also summarized.

Results

Pharmacokinetic data on lymphatic transport were available for 103 drugs. Significantly higher FRL [median (IQR)] was observed in advanced lipid based formulations [54.4% (52.0)] and oil solutions [38.9% (60.8)] compared to simple formulations [2.0% (27.1)], p < 0.0001 and p = 0.004, respectively. Advanced lipid based formulations also provided substantial FRL in drugs with log P < 5, which was not observed in simple formulations and oil solutions. No relation was found between FRL and molecular weight. There were 10 distinct methods used for in vivo testing of lymphatic transport after intestinal absorption so far.

Conclusion

Advanced lipid based formulations provide superior ability to increase lymphatic absorption in drugs of various molecular weights and in drugs with moderate to low lipophilicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DTX-S-OA:

Docetaxel thioether oleate

MCT:

Medium chain triglycerides

2-MPA-TG:

1,3-dipalmitoyl-2-mycophenoloyl glycerol

LCT:

Long chain triglycerides

SCT:

Short chain triglycerides

SEDDS:

Self-emulsifying drug delivery system

SES:

Self-emulsifying system

SLN:

Solid lipid nanoparticles

SMEDDS:

Self-microemulsifying drug delivery system

SNEDDS:

Self-nanoemulsifying drug delivery system

SNEOF:

Self-nanoemulsifying oily formulation

SNESN:

Self-nanoemulsifying self-nanosuspension

TST-C5-βMe-TG:

Testosterone triglyceride prodrug

References

  1. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    CAS  PubMed  Google Scholar 

  2. Caliph SM, Faassen WA, Vogel GM, Porter CJ. Oral bioavailability assessment and intestinal lymphatic transport of Org 45697 and Org 46035, two highly lipophilic novel immunomodulator analogues. Curr Drug Deliv. 2009;6(4):359–66.

    CAS  PubMed  Google Scholar 

  3. Charman WNA, Stella VJ. Estimating the maximal potential for intestinal lymphatic transport of lipophilic drug molecules. Int J Pharm. 1986;34(1–2):175–8.

    CAS  Google Scholar 

  4. Shackleford DM, Faassen WA, Houwing N, Lass H, Edwards GA, Porter CJ, et al. Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. J Pharmacol Exp Ther. 2003;306(3):925–33.

    CAS  PubMed  Google Scholar 

  5. Trevaskis NL, Shackleford DM, Charman WN, Edwards GA, Gardin A, Appel-Dingemanse S, et al. Intestinal lymphatic transport enhances the post-prandial oral bioavailability of a novel cannabinoid receptor agonist via avoidance of first-pass metabolism. Pharm Res. 2009;26(6):1486–95.

    CAS  PubMed  Google Scholar 

  6. Zhang B, Xue A, Zhang C, Yu J, Chen W, Sun D. Bile salt liposomes for enhanced lymphatic transport and oral bioavailability of paclitaxel. Pharmazie. 2016;71(6):320–6.

    CAS  PubMed  Google Scholar 

  7. Takada K, Yoshimura H, Yoshikawa H, Muranishi S, Yasumura T, Oka T. Enhanced selective lymphatic delivery of cyclosporin a by solubilizers and intensified immunosuppressive activity against mice skin allograft. Pharm Res. 1986;3(1):48–51.

    CAS  PubMed  Google Scholar 

  8. Yoshida T, Nakanishi K, Yoshioka T, Tsutsui Y, Maeda A, Kondo H, et al. Oral tacrolimus oil formulations for enhanced lymphatic delivery and efficient inhibition of T-cell's interleukin-2 production. Eur J Pharm Biopharm. 2016;100:58–65.

    CAS  PubMed  Google Scholar 

  9. Han S, Quach T, Hu L, Wahab A, Charman WN, Stella VJ, et al. Targeted delivery of a model immunomodulator to the lymphatic system: comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies. J Control Release. 2014;177:1–10.

    CAS  PubMed  Google Scholar 

  10. Forth W, Furukawa E, Rummel W. Die Bestimmung der intestinalen Resorption von Herzglykosiden durch Messung der 3H-markierten Glykoside im Portalvenenblut und in der Darmlymphe bei Katzen. Naunyn-Schmiedebergs Archiv für Pharmakologie. 1969;264(4):406–19.

    CAS  PubMed  Google Scholar 

  11. De Marco TJ, Levine RR. Role of the lymphatics in the intestinal absorption and distribution of drugs. J Pharmacol Exp Ther. 1969;169(1):142–51.

    PubMed  Google Scholar 

  12. Shackleford DM, Porter CJH, Charman WN. Lymphatic absorption of orally administered prodrugs. In: V.J. S, R.T. B, M.J. H, R. O, H. M, J.W. T, editors. Prodrugs Biotechnology: Pharmaceutical Aspects. New York: Springer; 2007.

  13. Reddy LH, Murthy RS. Lymphatic transport of orally administered drugs. Indian J Exp Biol. 2002;40(10):1097–109.

    CAS  PubMed  Google Scholar 

  14. Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv. 2018;15(8):787–804.

    CAS  PubMed  Google Scholar 

  15. Wasan KM. The role of lymphatic transport in enhancing oral protein and peptide drug delivery. Drug Dev Ind Pharm. 2002;28(9):1047–58.

    CAS  PubMed  Google Scholar 

  16. Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14(11):781–803.

    CAS  PubMed  Google Scholar 

  17. Trevaskis NL, Charman WN, Porter CJH. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliver Rev. 2008;60(6):702–16.

    CAS  Google Scholar 

  18. O'Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci. 2002;15(5):405–15.

    CAS  PubMed  Google Scholar 

  19. Yanez JA, Wang SWJ, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliver Rev. 2011;63(10–11):923–42.

    CAS  Google Scholar 

  20. Trevaskis NL, Hu L, Caliph SM, Han S, Porter CJ. The mesenteric lymph duct cannulated rat model: application to the assessment of intestinal lymphatic drug transport. J Vis Exp. 2015;97.

  21. Lawless E, Griffin BT, O'Mahony A, O'Driscoll CM. Exploring the impact of drug properties on the extent of intestinal lymphatic transport - in vitro and in vivo studies. Pharm Res. 2015;32(5):1817–29.

    CAS  PubMed  Google Scholar 

  22. Lamka J, Jindrova O, Gallova S, Uhrova R, Kvetina J. Influence of the composition of rat central lymph on the pharmacokinetics (the steady state during infusion, bioavailability, absorption) of diazepam, studied in the blood and lymph. Physiol Bohemoslov. 1990;39(5):403–8.

    CAS  PubMed  Google Scholar 

  23. Porter CJ, Charman SA, Humberstone AJ, Charman WN. Lymphatic transport of halofantrine in the conscious rat when administered as either the free base or the hydrochloride salt: effect of lipid class and lipid vehicle dispersion. J Pharm Sci. 1996;85(4):357–61.

    CAS  PubMed  Google Scholar 

  24. Hauss DJ, Fogal SE, Ficorilli JV, Price CA, Roy T, Jayaraj AA, et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 1998;87(2):164–9.

    CAS  PubMed  Google Scholar 

  25. Dahan A, Hoffman A. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs. Eur J Pharm Sci. 2005;24(4):381–8.

    CAS  PubMed  Google Scholar 

  26. Gershkovich P, Qadri B, Yacovan A, Amselem S, Hoffman A. Different impacts of intestinal lymphatic transport on the oral bioavailability of structurally similar synthetic lipophilic cannabinoids: Dexanabinol and PRS-211,220. Eur J Pharm Sci. 2007;31(5):298–305.

    CAS  PubMed  Google Scholar 

  27. Khoo SM, Shackleford DM, Porter CJ, Edwards GA, Charman WN. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm Res. 2003;20(9):1460–5.

    CAS  PubMed  Google Scholar 

  28. Choo EF, Boggs J, Zhu C, Lubach JW, Catron ND, Jenkins G, et al. The role of lymphatic transport on the systemic bioavailability of the Bcl-2 protein family inhibitors navitoclax (ABT-263) and ABT-199. Drug Metab Dispos. 2014;42(2):207–12.

    CAS  PubMed  Google Scholar 

  29. Trevaskis NL, McEvoy CL, McIntosh MP, Edwards GA, Shanker RM, Charman WN, et al. The role of the intestinal lymphatics in the absorption of two highly lipophilic cholesterol ester transfer protein inhibitors (CP524,515 and CP532,623). Pharm Res. 2010;27(5):878–93.

    CAS  PubMed  Google Scholar 

  30. Khoo SM, Edwards GA, Porter CJH, Charman WN. A conscious dog model for assessing the absorption, enterocyte-based metabolism, and intestinal lymphatic transport of halofantrine. J Pharm Sci-Us. 2001;90(10):1599–607.

    CAS  Google Scholar 

  31. Andersson KE, Bergdahl B, Dencker H, Wettrell G. Activities of proscillaridin a in thoracic duct lymph after single oral doses in man. Acta Pharmacol Toxicol (Copenh). 1977;40(2):280–4.

    CAS  Google Scholar 

  32. Horst HJ, Holtje WJ, Dennis M, Coert A, Geelen J, Voigt KD. Lymphatic absorption and metabolism of orally administered testosterone undecanoate in man. Klin Wochenschr. 1976;54(18):875–9.

    CAS  PubMed  Google Scholar 

  33. Beermann B, Hellström K, Rosén A, Werner B. Elimination of orally administered digoxin and digitoxin by thoracic duct drainage in man. Eur J Clin Pharmacol. 1972;5(1):19–21.

    CAS  Google Scholar 

  34. Goodman DS, Blomstrand R, Werner B, Huang HS, Shiratori T. The intestinal absorption and metabolism of vitamin a and beta-carotene in man. J Clin Invest. 1966;45(10):1615–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Blomstrand R, Forsgren L. Vitamin K1-3H in man. Its intestinal absorption and transport in the thoracic duct lymph. Int Z Vitaminforsch. 1968;38(1):45–64.

    CAS  PubMed  Google Scholar 

  36. Zhang D, Pan X, Wang S, Zhai Y, Guan J, Fu Q, et al. Multifunctional poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-beta-cyclodextrin Amphiphilic copolymer as an Oral high-performance delivery carrier of Tacrolimus. Mol Pharm. 2015;12(7):2337–51.

    CAS  PubMed  Google Scholar 

  37. Kou L, Yao Q, Sun M, Wu C, Wang J, Luo Q, Wang G, Du Y, Fu Q, Wang J, He Z, Ganapathy V, Sun J. Cotransporting ion is a trigger for cellular endocytosis of transporter-targeting nanoparticles: a case study of high-efficiency SLC22A5 (OCTN2)-mediated carnitine-conjugated nanoparticles for oral delivery of therapeutic drugs. Adv Healthc Mater. 2017;6(17).

  38. Cho HJ, Park JW, Yoon IS, Kim DD. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomedicine. 2014;9:495–504.

    PubMed  PubMed Central  Google Scholar 

  39. Imada C, Takahashi T, Kuramoto M, Masuda K, Ogawara K, Sato A, et al. Improvement of Oral bioavailability of N-251, a novel antimalarial drug, by increasing lymphatic transport with long-chain fatty acid-based self-Nanoemulsifying drug delivery system. Pharm Res. 2015;32(8):2595–608.

    CAS  PubMed  Google Scholar 

  40. Cavalli R, Bargoni A, Podio V, Muntoni E, Zara GP, Gasco MR. Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J Pharm Sci. 2003;92(5):1085–94.

    CAS  PubMed  Google Scholar 

  41. Trevaskis NL, Caliph SM, Nguyen G, Tso P, Charman WN, Porter CJ. A mouse model to evaluate the impact of species, sex, and lipid load on lymphatic drug transport. Pharm Res. 2013;30(12):3254–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. White DG, Story MJ, Barnwell SG. An experimental animal model for studying the effects of a novel lymphatic drug delivery system for propranolol. Int J Pharm. 1991;69(2):169–74.

    CAS  Google Scholar 

  43. Sudo LS, Almeida MG, Yasaka W, Garcia-Leme J. Lymphatic transport of salicylates in dogs. Gen Pharmacol. 1989;20(6):779–83.

    CAS  PubMed  Google Scholar 

  44. Sieber SM, Cohn VH, Wynn WT. The entry of foreign compounds into the thoracic duct lymph of the rat. Xenobiotica. 1974;4(5):265–84.

    CAS  PubMed  Google Scholar 

  45. Ichihashi T, Nagasaki T, Takagishi Y, Yamada H. A quantitative concept of the mechanism of intestinal lymphatic transfer of lipophilic molecules. Pharm Res. 1994;11(4):508–12.

    CAS  PubMed  Google Scholar 

  46. Avasarala H, Dinakaran SK, Kakaraparthy R, Jayanti VR. Self-emulsifying drug delivery system for enhanced solubility of asenapine maleate: design, characterization, in vitro, ex vivo and in vivo appraisal. Drug Dev Ind Pharm. 2019;45(4):548–59.

    CAS  PubMed  Google Scholar 

  47. Patel MH, Mundada VP, Sawant KK. Novel drug delivery approach via self-microemulsifying drug delivery system for enhancing Oral bioavailability of Asenapine maleate: optimization, characterization, cell uptake, and in vivo pharmacokinetic studies. AAPS PharmSciTech. 2019;20(2):44.

    CAS  PubMed  Google Scholar 

  48. Lee JB, Kim TH, Feng W, Choi HG, Zgair A, Shin S, et al. Quantitative prediction of Oral bioavailability of a lipophilic antineoplastic drug Bexarotene administered in Lipidic formulation using a combined in vitro lipolysis/microsomal metabolism approach. J Pharm Sci. 2019;108(2):1047–52.

    CAS  PubMed  Google Scholar 

  49. Lee JB, Zgair A, Malec J, Kim TH, Kim MG, Ali J, et al. Lipophilic activated ester prodrug approach for drug delivery to the intestinal lymphatic system. J Control Release. 2018;286:10–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Arya A, Ahmad H, Tulsankar S, Agrawal S, Mittapelly N, Boda R, et al. Bioflavonoid hesperetin overcome bicalutamide induced toxicity by co-delivery in novel SNEDDS formulations: optimization, in vivo evaluation and uptake mechanism. Mat Sci Eng C-Mater. 2017;71:954–64.

    CAS  Google Scholar 

  51. Yoshikawa H, Muranishi S, Kato C, Sezaki H. Bifunctional delivery system for selective transfer of Bleomycin into Lymphatics via enteral route. Int J Pharm. 1981;8(4):291–302.

    CAS  Google Scholar 

  52. Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomedicine. 2015;10:4797–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ling SSN, Magosso E, Khan NAK, Yuen KH, Barker SA. Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Dev Ind Pharm. 2006;32(3):335–45.

    CAS  PubMed  Google Scholar 

  54. Garzon-Aburbeh A, Poupaert JH, Claesen M, Dumont P, Atassi G. 1,3-dipalmitoylglycerol ester of chlorambucil as a lymphotropic, orally administrable antineoplastic agent. J Med Chem. 1983;26(8):1200–3.

    CAS  PubMed  Google Scholar 

  55. Dahan A, Mendelman A, Amsili S, Ezov N, Hoffman A. The effect of general anesthesia on the intestinal lymphatic transport of lipophilic drugs: comparison between anesthetized and freely moving conscious rat models. Eur J Pharm Sci. 2007;32(4–5):367–74.

    CAS  PubMed  Google Scholar 

  56. Liu HX, Adachi I, Horikoshi I, Ueno M. Mechanism of promotion of lymphatic drug absorption by Milk-fat globule-membrane. Int J Pharm. 1995;118(1):55–64.

    CAS  Google Scholar 

  57. Hauss DJ, Mehta SC, Radebaugh GW. Targeted lymphatic transport and modified systemic distribution of CI-976, a lipophilic lipid-regulator drug, via a formulation approach. Int J Pharm. 1994;108(2):85–93.

    CAS  Google Scholar 

  58. Trevaskis NL, Shanker RM, Charman WN, Porter CJ. The mechanism of lymphatic access of two cholesteryl ester transfer protein inhibitors (CP524,515 and CP532,623) and evaluation of their impact on lymph lipoprotein profiles. Pharm Res. 2010;27(9):1949–64.

    CAS  PubMed  Google Scholar 

  59. Trevaskis NL, Charman WN, Porter CJH. Targeted drug delivery to lymphocytes: a route to site-specific immunomodulation? Mol Pharm. 2010;7(6):2297–309.

    CAS  PubMed  Google Scholar 

  60. Takada K, Furuya Y, Yoshikawa H, Muranishi S. Biological and pharmaceutical factors affecting the absorption and lymphatic delivery of ciclosporin a from gastrointestinal tract. Aust J Pharm. 1988;11(2):80–7.

    CAS  Google Scholar 

  61. Yanagawa A, Iwayama T, Saotome T, Shoji Y, Takano K, Oka H, et al. Selective transfer of cyclosporin to thoracic lymphatic systems by the application of lipid microspheres. J Microencapsul. 1989;6(2):161–4.

    CAS  PubMed  Google Scholar 

  62. Takada K, Shibata N, Yoshimura H, Masuda Y, Yoshikawa H, Muranishi S, et al. Promotion of the selective lymphatic delivery of Cyclosporin-a by lipid-surfactant mixed micelles. J Pharmacobio-Dynam. 1985;8(4):320–3.

    CAS  Google Scholar 

  63. Ueda CT, Lemaire M, Gsell G, Nussbaumer K. Intestinal lymphatic absorption of cyclosporin a following oral administration in an olive oil solution in rats. Biopharm Drug Dispos. 1983;4(2):113–24.

    CAS  PubMed  Google Scholar 

  64. Hu M, Zhang J, Ding R, Fu Y, Gong T, Zhang Z. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system. Drug Dev Ind Pharm. 2017;43(4):687–97.

    CAS  PubMed  Google Scholar 

  65. Garg B, Beg S, Kaur R, Kumar R, Katare OP, Singh B. Long-chain triglycerides-based self-nanoemulsifying oily formulations (SNEOFs) of darunavir with improved lymphatic targeting potential. J Drug Target. 2018;26(3):252–66.

    CAS  PubMed  Google Scholar 

  66. El-Laithy HM, Basalious EB, El-Hoseiny BM, Adel MM. Novel self-nanoemulsifying self-nanosuspension (SNESNS) for enhancing oral bioavailability of diacerein: simultaneous portal blood absorption and lymphatic delivery. Int J Pharm. 2015;490(1–2):146–54.

    CAS  PubMed  Google Scholar 

  67. Siram K, Chellan VR, Natarajan T, Krishnamoorthy B, Mohamed Ebrahim HR, Karanam V, et al. Solid lipid nanoparticles of diethylcarbamazine citrate for enhanced delivery to the lymphatics: in vitro and in vivo evaluation. Expert Opin Drug Deliv. 2014;11(9):1351–65.

    CAS  PubMed  Google Scholar 

  68. Oliver GC, Cooksey J, Witte C, Witte M. Absorption and transport of digitoxin in the dog. Circ Res. 1971;29(4):419–23.

    CAS  PubMed  Google Scholar 

  69. Beermann B, Hellstrom K. The efficacy of lymph drainage in the elimination of orally administered digitoxin and digoxin. Pharmacology. 1971;6(1):17–21.

    CAS  PubMed  Google Scholar 

  70. Cui W, Zhang S, Zhao H, Luo C, Sun B, Li Z, et al. Formulating a single thioether-bridged oleate prodrug into a self-nanoemulsifying drug delivery system to facilitate oral absorption of docetaxel. Biomater Sci. 2019;7(3):1117–31.

    CAS  PubMed  Google Scholar 

  71. Valicherla GR, Dave KM, Syed AA, Riyazuddin M, Gupta AP, Singh A, Wahajuddin, Mitra K, Datta D, Gayen JR. Formulation optimization of docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci Rep-Uk. 2016;6.

  72. Fang GH, Tang B, Chao YH, Zhang Y, Xu H, Tang X. Improved oral bioavailability of docetaxel by nanostructured lipid carriers: in vitro characteristics, in vivo evaluation and intestinal transport studies. RSC Adv. 2015;5(117):96437–47.

    CAS  Google Scholar 

  73. Attili-Qadri S, Karra N, Nemirovski A, Schwob O, Talmon Y, Nassar T, et al. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. P Natl Acad Sci USA. 2013;110(43):17498–503.

    CAS  Google Scholar 

  74. Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm. 2015;495(1):439–46.

    CAS  PubMed  Google Scholar 

  75. Ichihashi T, Kinoshita H, Takagishi Y, Yamada H. Intrinsic lymphatic partition rate of mepitiostane, epitiostanol, and oleic acid absorbed from rat intestine. Pharm Res. 1991;8(10):1302–6.

    CAS  PubMed  Google Scholar 

  76. Nankervis R, Davis SS, Day NH, Shaw PN. Intestinal lymphatic transport of three retinoids in the rat after oral administration: effect of lipophilicity and lipid vehicle. Int J Pharm. 1996;130(1):57–64.

    CAS  Google Scholar 

  77. Noguchi T, Taniguchi K, Yoshifuji T, Muranishi S, Sezaki H. Lymphatic transport of griseofulvin in the rat and the possible factors determining the extent of lymphatic absorption. Chem Pharm Bull (Tokyo). 1977;25(9):2231–8.

    CAS  Google Scholar 

  78. Lind ML, Jacobsen J, Holm R, Mullertz A. Intestinal lymphatic transport of halofantrine in rats assessed using a chylomicron flow blocking approach: the influence of polysorbate 60 and 80. Eur J Pharm Sci. 2008;35(3):211–8.

    CAS  PubMed  Google Scholar 

  79. Karpf DM, Holm R, Kristensen HG, Mullertz A. Influence of the type of surfactant and the degree of dispersion on the lymphatic transport of halofantrine in conscious rats. Pharm Res. 2004;21(8):1413–8.

    CAS  PubMed  Google Scholar 

  80. Holm R, Porter CJ, Edwards GA, Mullertz A, Kristensen HG, Charman WN. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. Eur J Pharm Sci. 2003;20(1):91–7.

    CAS  PubMed  Google Scholar 

  81. Holm R, Porter CJ, Mullertz A, Kristensen HG, Charman WN. Structured triglyceride vehicles for oral delivery of halofantrine: examination of intestinal lymphatic transport and bioavailability in conscious rats. Pharm Res. 2002;19(9):1354–61.

    CAS  PubMed  Google Scholar 

  82. Caliph SM, Charman WN, Porter CJ. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci. 2000;89(8):1073–84.

    CAS  PubMed  Google Scholar 

  83. Porter CJ, Charman SA, Charman WN. Lymphatic transport of halofantrine in the triple-cannulated anesthetized rat model: effect of lipid vehicle dispersion. J Pharm Sci. 1996;85(4):351–6.

    CAS  PubMed  Google Scholar 

  84. Garzon-Aburbeh A, Poupaert JH, Claesen M, Dumont P. A lymphotropic prodrug of L-dopa: synthesis, pharmacological properties, and pharmacokinetic behavior of 1,3-dihexadecanoyl-2-[(S)-2-amino-3-(3,4-dihydroxyphenyl)prop anoyl] propane-1,2,3-triol. J Med Chem. 1986;29(5):687–91.

    CAS  PubMed  Google Scholar 

  85. Sugihara J, Furuuchi S. Lymphatic absorption of hypolipidemic compound, 1-O-[p-(myristyloxy)-alpha-methylcinnamoyl] glycerol (LK-903). Aust J Pharm. 1988;11(2):121–30.

    CAS  Google Scholar 

  86. Aji Alex MR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42(1–2):11–8.

    CAS  PubMed  Google Scholar 

  87. Nielsen PB, Mullertz A, Norling T, Kristensen HG. Comparison of the lymphatic transport of a lipophilic drug from vehicles containing alpha-tocopherol and/or triglycerides in rats. J Pharm Pharmacol. 2001;53(11):1439–45.

    CAS  PubMed  Google Scholar 

  88. Patel MH, Sawant KK. Self microemulsifying drug delivery system of lurasidone hydrochloride for enhanced oral bioavailability by lymphatic targeting: in vitro, Caco-2 cell line and in vivo evaluation. Eur J Pharm Sci. 2019;138:105027.

    CAS  PubMed  Google Scholar 

  89. Ichihashi T, Kinoshita H, Takagishi Y, Yamada H. Effect of bile on absorption of mepitiostane by the lymphatic system in rats. J Pharm Pharmacol. 1992;44(7):565–9.

    CAS  PubMed  Google Scholar 

  90. Ichihashi T, Kinoshita H, Takagishi Y, Yamada H. Effect of oily vehicles on absorption of mepitiostane by the lymphatic system in rats. J Pharm Pharmacol. 1992;44(7):560–4.

    CAS  PubMed  Google Scholar 

  91. Ichihashi T, Kinoshita H, Yamada H. Absorption and disposition of epithiosteroids in rats (2): avoidance of first-pass metabolism of mepitiostane by lymphatic absorption. Xenobiotica. 1991;21(7):873–80.

    CAS  PubMed  Google Scholar 

  92. Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine. 2009;5(2):184–91.

    CAS  PubMed  Google Scholar 

  93. White KL, Nguyen G, Charman WN, Edwards GA, Faassen WA, Porter CJH. Lymphatic transport of Methylnortestosterone Undecanoate (MU) and the bioavailability of Methylnortestosterone are highly sensitive to the mass of coadministered lipid after oral administration of MU. J Pharmacol Exp Ther. 2009;331(2):700–9.

    CAS  PubMed  Google Scholar 

  94. Kwei GY, Novak LB, Hettrick LH, Reiss ER, Fong EK, Olah TV, et al. Lymphatic uptake of MK-386, a sterol 5 alpha-reductase inhibitor, from aqueous and lipid formulations. Int J Pharm. 1998;164(1–2):37–44.

    CAS  Google Scholar 

  95. Lespine A, Chanoit G, Bousquet-Melou A, Lallemand E, Bassissi FM, Alvinerie M, et al. Contribution of lymphatic transport to the systemic exposure of orally administered moxidectin in conscious lymph duct-cannulated dogs. Eur J Pharm Sci. 2006;27(1):37–43.

    CAS  PubMed  Google Scholar 

  96. Han SF, Hu LJ. Gracia, Quach T, Simpson JS, Edwards GA, Trevaskis NL, Porter CJH. Lymphatic transport and lymphocyte targeting of a triglyceride mimetic Prodrug is enhanced in a large animal model: studies in greyhound dogs. Mol Pharm. 2016;13(10):3351–61.

    CAS  PubMed  Google Scholar 

  97. Han S, Hu L, Quach T, Simpson JS, Trevaskis NL, Porter CJH. Constitutive triglyceride turnover into the mesenteric lymph is unable to support efficient lymphatic transport of a biomimetic triglyceride Prodrug. J Pharm Sci. 2016;105(2):786–96.

    CAS  PubMed  Google Scholar 

  98. Grimus RC, Schuster I. The role of the lymphatic transport in the enteral absorption of naftifine by the rat. Xenobiotica. 1984;14(4):287–94.

    CAS  PubMed  Google Scholar 

  99. Sugihara J, Furuuchi S, Ando H, Takashima K, Harigaya S. Studies on intestinal lymphatic absorption of drugs. II. Glyceride prodrugs for improving lymphatic absorption of naproxen and nicotinic acid. Aust J Pharm. 1988;11(8):555–62.

    CAS  Google Scholar 

  100. Sugihara J, Furuuchi S, Nakano K, Harigaya S. Studies on intestinal lymphatic absorption of drugs. I. Lymphatic absorption of alkyl ester derivatives and alpha-monoglyceride derivatives of drugs. Aust J Pharm. 1988;11(5):369–76.

    CAS  Google Scholar 

  101. Fu Q, Sun J, Ai X, Zhang P, Li M, Wang Y, et al. Nimodipine nanocrystals for oral bioavailability improvement: role of mesenteric lymph transport in the oral absorption. Int J Pharm. 2013;448(1):290–7.

    CAS  PubMed  Google Scholar 

  102. Caliph SM, Faassen FW, Porter CJH. The influence of intestinal lymphatic transport on the systemic exposure and brain deposition of a novel highly lipophilic compound with structural similarity to cholesterol. J Pharm Pharmacol. 2014;66(10):1377–87.

    CAS  PubMed  Google Scholar 

  103. Cai Q, Deng X, Li Z, An D, Shen T, Zhong M. Effects of lipid vehicle and P-glycoprotein inhibition on the mesenteric lymphatic transport of paclitaxel in unconscious, lymph duct-cannulated rats. Drug Deliv. 2016;23(1):147–53.

    CAS  PubMed  Google Scholar 

  104. Myers RA, Stella VJ. Factors affecting the lymphatic transport of Penclomedine (Nsc-338720), a lipophilic cytotoxic drug - comparison to Ddt and Hexachlorobenzene. Int J Pharm. 1992;80(1):51–62.

    CAS  Google Scholar 

  105. Lowrimore MG, Porter AB, Hume AS. Lymphatic and portal venous absorption of phenobarbital and thiopental in the dog. Arch Int Pharmacodyn Ther. 1987;288(1):5–10.

    CAS  PubMed  Google Scholar 

  106. Xing Q, Song J, You X, Xu D, Wang K, Song J, et al. Microemulsions containing long-chain oil ethyl oleate improve the oral bioavailability of piroxicam by increasing drug solubility and lymphatic transportation simultaneously. Int J Pharm. 2016;511(2):709–18.

    CAS  PubMed  Google Scholar 

  107. Han L, Yang Q, Shen T, Qing J, Wang J. Lymphatic transport of orally administered probucol-loaded mPEG-DSPE micelles. Drug Deliv. 2016;23(6):1955–61.

    CAS  PubMed  Google Scholar 

  108. Fan ZY, Wu J, Fang XL, Sha XY. A new function of vitamin E-TPGS in the intestinal lymphatic transport of lipophilic drugs: enhancing the secretion of chylomicrons. Int J Pharm. 2013;445(1–2):141–7.

    CAS  PubMed  Google Scholar 

  109. Palin KJ, Wilson CG. The effect of different oils on the absorption of probucol in the rat. J Pharm Pharmacol. 1984;36(9):641–3.

    CAS  PubMed  Google Scholar 

  110. Ye YH, Zhang TP, Li W, Sun H, Lu DY, Wu BJ, et al. Glucose-based Mesoporous carbon Nanospheres as functional carriers for Oral delivery of Amphiphobic Raloxifene: insights into the bioavailability enhancement and lymphatic transport. Pharm Res. 2016;33(3):792–803.

    CAS  PubMed  Google Scholar 

  111. Ravi PR, Aditya N, Kathuria H, Malekar S, Vats R. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm. 2014;87(1):114–24.

    CAS  PubMed  Google Scholar 

  112. Tso P, Lee T, DeMichele SJ. Randomized structured triglycerides increase lymphatic absorption of tocopherol and retinol compared with the equivalent physical mixture in a rat model of fat malabsorption. J Nutr. 2001;131(8):2157–63.

    CAS  PubMed  Google Scholar 

  113. Beg S, Alam MN, Ahmad FJ, Singh B. Chylomicron mimicking nanocolloidal carriers of rosuvastatin calcium for lymphatic drug targeting and management of hyperlipidemia. Colloid Surface B. 2019;177:541–9.

    CAS  Google Scholar 

  114. Griffin BT, O'Driscoll CM. A comparison of intestinal lymphatic transport and systemic bioavailability of saquinavir from three lipid-based formulations in the anaesthetised rat model. J Pharm Pharmacol. 2006;58(7):917–25.

    CAS  PubMed  Google Scholar 

  115. Griffin BT, O'Driscoll CM. An examination of the effect of intestinal first pass extraction on intestinal lymphatic transport of saquinavir in the rat. Pharm Res. 2008;25(5):1125–33.

    CAS  PubMed  Google Scholar 

  116. Grove M, Nielsen JL, Pedersen GP, Mullertz A. Bioavailability of seocalcitol IV: evaluation of lymphatic transport in conscious rats. Pharm Res. 2006;23(11):2681–8.

    CAS  PubMed  Google Scholar 

  117. Sun M, Zhai X, Xue K, Hu L, Yang X, Li G, et al. Intestinal absorption and intestinal lymphatic transport of sirolimus from self-microemulsifying drug delivery systems assessed using the single-pass intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach: linear correlation with oral bioavailabilities in rats. Eur J Pharm Sci. 2011;43(3):132–40.

    CAS  PubMed  Google Scholar 

  118. Li SY, Jin S, Wang XL, Song NQ, Wang PL, Chen FN, et al. Intestinal lymphatic transport study of antitumor lead compound T-OA with liposomes. Pak J Pharm Sci. 2020;33(2):631–40.

    PubMed  Google Scholar 

  119. Cho HY, Choi JH, Oh IJ, Lee YB. Self-emulsifying drug delivery system for enhancing bioavailability and lymphatic delivery of Tacrolimus. J Nanosci Nanotechnol. 2015;15(2):1831–41.

    CAS  PubMed  Google Scholar 

  120. Shete H, Chatterjee S, De A, Patravale V. Long chain lipid based tamoxifen NLC. Part II: pharmacokinetic, biodistribution and in vitro anticancer efficacy studies. Int J Pharm. 2013;454(1):584–92.

    CAS  PubMed  Google Scholar 

  121. Baheti A, Srivastava S, Sahoo D, Lowalekar R, Panda BP, Padhi BK, et al. Development and pharmacokinetic evaluation of industrially viable self-microemulsifying drug delivery systems (SMEDDS) for Terbinafine. Curr Drug Deliv. 2015.

  122. Hu L, Quach T, Han S, Lim SF, Yadav P, Senyschyn D, et al. Glyceride-mimetic Prodrugs incorporating self-Immolative spacers promote lymphatic transport, avoid first-pass metabolism, and enhance Oral bioavailability. Angew Chem Int Ed Engl. 2016;55(44):13700–5.

    CAS  PubMed  Google Scholar 

  123. Coert A, Geelen J, de Visser J, van der Vies J. The pharmacology and metabolism of testosterone undecanoate (TU), a new orally active androgen. Acta Endocrinol. 1975;79(4):789–800.

    CAS  PubMed  Google Scholar 

  124. Nishimukai M, Hara H. Enteral administration of soybean phosphatidylcholine enhances the lymphatic absorption of lycopene, but reduces that of alpha-tocopherol in rats. J Nutr. 2004;134(8):1862–6.

    CAS  PubMed  Google Scholar 

  125. Gallo-Torres HE. Intestinal absorption and lymphatic transport of d,1-3,4-3H2-a-tocopheryl nicotinate in the rat. Int Z Vitaminforsch. 1970;40(4):505–14.

    CAS  PubMed  Google Scholar 

  126. Wang T, Shen L, Zhang Z, Li H, Huang R, Zhang Y, et al. A novel core-shell lipid nanoparticle for improving oral administration of water soluble chemotherapeutic agents: inhibited intestinal hydrolysis and enhanced lymphatic absorption. Drug Deliv. 2017;24(1):1565–73.

    CAS  PubMed  Google Scholar 

  127. Dahan A, Duvdevani R, Shapiro I, Elmann A, Finkelstein E, Hoffman A. The oral absorption of phospholipid prodrugs: in vivo and in vitro mechanistic investigation of trafficking of a lecithin-valproic acid conjugate following oral administration. J Control Release. 2008;126(1):1–9.

    CAS  PubMed  Google Scholar 

  128. Cao EY, Lindgren A, Martinsson S, Hu LJ, Lindfors L, Sigfridsson K, et al. Promoting intestinal lymphatic transport targets a liver-X receptor (LXR) agonist (WAY-252,623) to lymphocytes and enhances immunomodulation. J Control Release. 2019;296:29–39.

    CAS  PubMed  Google Scholar 

  129. Dembri A, Montisci MJ, Gantier JC, Chacun H, Ponchel G. Targeting of 3 '-azido 3 '-deoxythymidine (AZT)-loaded poly(isohexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm Res. 2001;18(4):467–73.

    CAS  PubMed  Google Scholar 

  130. Valtola A, Kokki H, Gergov M, Ojanpera I, Ranta VP, Hakala T. Does coronary artery bypass surgery affect metoprolol bioavailability. Eur J Clin Pharmacol. 2007;63(5):471–8.

    PubMed  Google Scholar 

  131. Caliph SM, Cao EY, Bulitta JB, Hu LJ, Han SF, Porter CJH, et al. The impact of lymphatic transport on the systemic disposition of lipophilic drugs. J Pharm Sci-Us. 2013;102(7):2395–408.

    CAS  Google Scholar 

  132. Holm R, Hoest J. Successful in silico predicting of intestinal lymphatic transfer. Int J Pharm. 2004;272(1–2):189–93.

    CAS  PubMed  Google Scholar 

  133. Porter CJH, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliver Rev. 2001;50(1–2):61–80.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors declare no conflict of interest. This work was supported by the Charles University Project Progres Q25 and grant No. SVV 260 523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Ryšánek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryšánek, P., Grus, T., Šíma, M. et al. Lymphatic Transport of Drugs after Intestinal Absorption: Impact of Drug Formulation and Physicochemical Properties. Pharm Res 37, 166 (2020). https://doi.org/10.1007/s11095-020-02858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02858-0

Key Words

Navigation