Skip to main content
Log in

Positively-Charged, Porous, Polysaccharide Nanoparticles Loaded with Anionic Molecules Behave as ‘Stealth’ Cationic Nanocarriers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Stealth nanoparticles are generally obtained after modifying their surface with hydrophilic polymers, such as PEG. In this study, we analysed the effect of a phospholipid (DG) or protein (BSA) inclusion in porous cationic polysaccharide (NP+) on their physico-chemical structure and the effect on complement activation.

Methods

NP+s were characterised in terms of size, zeta potential (ζ) and static light scattering (SLS). Complement consumption was assessed in normal human serum (NHS) by measuring the residual haemolytic capacity of the complement system.

Results

DG loading did not change their size or ζ, whereas progressive BSA loading lightly decreased their ζ. An electrophoretic mobility analysis study showed the presence of two differently-charged sublayers at the NP+ surface which are not affected by DG loading. Complement system activation, studied via a CH50 test, was suppressed by DG or BSA loading. We also demonstrated that NP+s could be loaded by a polyanionic molecule, such as BSA, after their preliminary filling by a hydrophobic molecule, such as DG.

Conclusion

These nanoparticles are able to absorb large amounts of phospholipids or proteins without change in their size or zeta potential. Complement studies showed that stealth behaviour is observed when they are loaded and saturated either with anionic phospholipid or proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29:3477–96.

    Article  PubMed  CAS  Google Scholar 

  2. Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci. 2008;97:4696–740.

    Article  PubMed  CAS  Google Scholar 

  3. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    PubMed  CAS  Google Scholar 

  4. Passirani C, Benoit JP. Complement activation by injectable colloidal drug carriers. In: Mahato RI, editor. Biomaterials for delivery and targeting of proteins and nucleic acids. New York: CRC; 2005. p. 187–230.

    Google Scholar 

  5. Muller-Eberhard HJ. Molecular organization and function of the complement system. Annu Rev Biochem. 1988;57:321–47.

    Article  PubMed  CAS  Google Scholar 

  6. Mayer M. Complement and complement fixation. In: Kabat EA, Mayer MM, editors. Experimental immunochemistry. 2nd ed. Springfield: Thomas; 1961. p. 133–56.

    Google Scholar 

  7. Kazatchkine M, Hauptmann G, Nydegger U. Techniques du Complement. Livre ed.INSERM collection technique en immunologie. 1986;22–33.

  8. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268:235–7.

    Article  PubMed  CAS  Google Scholar 

  9. Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 1987;223:42–6.

    Article  PubMed  CAS  Google Scholar 

  10. Gabizon A, Isacson R, Libson E, Kaufman B, Uziely B, Catane R, et al. Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol. 1994;33:779–86.

    Article  PubMed  CAS  Google Scholar 

  11. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  PubMed  CAS  Google Scholar 

  12. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    PubMed  CAS  Google Scholar 

  13. Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A. 2006;78:620–8.

    PubMed  CAS  Google Scholar 

  14. Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int J Pharm. 2007;344:103–9.

    Article  PubMed  CAS  Google Scholar 

  15. Loiseau PM, Imbertie L, Bories C, Betbeder D, De Miguel I. Design and antileishmanial activity of amphotericin B-loaded stable ionic amphiphile biovector formulations. Antimicrob Agents Chemother. 2002;46:1597–601.

    Article  PubMed  CAS  Google Scholar 

  16. Debin A, Kravtzoff R, Santiago JV, Cazales L, Sperandio S, Melber K, et al. Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses. Vaccine. 2002;20:2752–63.

    Article  PubMed  CAS  Google Scholar 

  17. El mir S, Casanova A, Betbeder D, Triebel F. A combination of interleukin-2 and 60 nm cationic supramolecular biovectors for the treatment of established tumours by subcutaneous or intranasal administration. Eur J Cancer. 2001;37:1053–60.

    Article  PubMed  CAS  Google Scholar 

  18. Baudner BC, Balland O, Giuliani MM, Von Hoegen P, Rappuoli R, Betbeder D, et al. Enhancement of protective efficacy following intranasal immunization with vaccine plus a nontoxic LTK63 mutant delivered with nanoparticles. Infect Immun. 2002;70:4785–90.

    Article  PubMed  CAS  Google Scholar 

  19. Betbeder D, Sperandio S, Latapie JP, de Nadai J, Etienne A, Zajac JM, et al. Biovector nanoparticles improve antinociceptive efficacy of nasal morphine. Pharm Res. 2000;17:743–8.

    Article  PubMed  CAS  Google Scholar 

  20. Razafindratsita A, Saint-Lu N, Mascarell L, Berjont N, Bardon T, Betbeder D, et al. Improvement of sublingual immunotherapy efficacy with a mucoadhesive allergen formulation. J Allergy Clin Immunol. 2007;120:278–85.

    Article  PubMed  CAS  Google Scholar 

  21. Fenart L, Casanova A, Dehouck B, Duhem C, Slupek S, Cecchelli R, et al. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther. 1999;291:1017–22.

    PubMed  CAS  Google Scholar 

  22. Major M, Prieur E, Tocanne JF, Betbeder D, Sautereau AM. Characterization and phase behaviour of phospholipid bilayers adsorbed on spherical polysaccharidic nanoparticles. Biochim Biophys Acta. 1997;1327:32–40.

    Article  PubMed  CAS  Google Scholar 

  23. Woodle MC, Papahadjopoulos D. Liposome preparation and size characterization. Methods Enzymol. 1989;171:193–217.

    Article  PubMed  CAS  Google Scholar 

  24. Siguier JP, Major M, Balland O. Development of a new method to characterize (SMBV) antigen formulations using surface plasmon resonance technology. Int J Pharm. 2002;242:411–5.

    Article  PubMed  CAS  Google Scholar 

  25. Domingues MM, Santiago PS, Castanho MARB, Santos NC. What can light scattering spectroscopy do for membrane-active peptide studies? J Pept Sci. 2008;14:394–400.

    Article  PubMed  CAS  Google Scholar 

  26. Serefoglou E, Oberdisse J, Staikos G. Characterization of the soluble nanoparticles formed through coulombic interaction of bovine serum albumin with anionic graft copolymers at low pH. Biomacromolecules. 2007;8:1195–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ohshima H. Electrokinetics of soft particles. Colloid Polym Sci. 2007;285:1411–21.

    Article  CAS  Google Scholar 

  28. Vonarbourg A, Saulnier P, Passirani C, Benoit JP. Electrokinetic properties of noncharged lipid nanocapsules: influence of the dipolar distribution at the interface. Electrophoresis. 2005;26:2066–75.

    Article  PubMed  CAS  Google Scholar 

  29. Matsuzaki K, Harada M, Funakoshi S, Fujii N, Miyajima K. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta. 1991;1063:162–70.

    Article  PubMed  CAS  Google Scholar 

  30. De Miguel I, Imbertie L, Rieumajou V, Major M, Kravtzoff R, Betbeder D. Proofs of the structure of lipid coated nanoparticles (SMBV) used as drug carriers. Pharm Res. 2000;17:817–24.

    Article  PubMed  Google Scholar 

  31. Ohshima H. Electrophoretic mobility of soft particles. J Colloid Interface Sci. 1994;163:474–83.

    Article  CAS  Google Scholar 

  32. Ducel V, Saulnier P, Richard J, Boury F. Plant protein-polysaccharide interactions in solutions: application of soft particle analysis and light scattering measurements. Colloids Surf B Biointerfaces. 2005;41:95–102.

    Article  PubMed  CAS  Google Scholar 

  33. Makino K, Yamamoto N, Higuchi K, Harada N, Ohshima H, Terada H. Phagocytic uptake of polystyrene microspheres by alveolar macrophages: effects of the size and surface properties of the microspheres. Colloids Surf B Biointerfaces. 2003;27:33–9.

    Article  CAS  Google Scholar 

  34. Makino K, Umetsu M, Goto Y, Nakayama A, Suhara T, Tsujii J, et al. Interaction between charged soft microcapsules and red blood cells: effects of PEGylation of microcapsule membranes upon their surface properties. Colloids Surf B Biointerfaces. 1999;13:287–97.

    Article  CAS  Google Scholar 

  35. Beduneau A, Saulnier P, Anton N, Hindre F, Passirani C, Rajerison H, et al. Pegylated nanocapsules produced by an organic solvent-free method: Evaluation of their stealth properties. Pharm Res. 2006;23:2190–9.

    Article  PubMed  CAS  Google Scholar 

  36. Labarre D, Montdargent B, Carreno M, Maillet F. Strategy for in vitro evaluation of the interactions between biomaterials and complement system. J Appl Biomater. 1993;4:231–40.

    Article  CAS  Google Scholar 

  37. Passirani C, Barratt G, Devissaguet JP, Labarre D. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm Res. 1998;15:1046–50.

    Article  PubMed  CAS  Google Scholar 

  38. Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm. 1998;46:255–63.

    Article  PubMed  CAS  Google Scholar 

  39. Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27:4356–73.

    Article  PubMed  CAS  Google Scholar 

  40. Black CD, Gregoriadis G. Interaction of liposomes with blood plasma proteins. Biochem Soc Trans. 1976;4:253–6.

    PubMed  CAS  Google Scholar 

  41. Toufik J, Labarre D. Relationship between reduction of complement activation by polysaccharide surfaces bearing diethylaminoethyl groups and their degree of substitution. Biomaterials. 1995;16:1081–8.

    Article  PubMed  CAS  Google Scholar 

  42. Carreno MP, Labarre D, Jozefowicz M, Kazatchkine MD. The ability of Sephadex to activate human complement is suppressed in specifically substituted functional Sephadex derivatives. Mol Immunol. 1988;25:165–71.

    Article  PubMed  CAS  Google Scholar 

  43. Law SK, Minich TM, Levine RP. Binding reaction between the third human complement protein and small molecules. Biochemistry. 1981;20:7457–63.

    Article  PubMed  CAS  Google Scholar 

  44. Labarre D, Laurent A, Lautier A, Bouhni S, Kerbellec L, Lewest JM, et al. Complement activation by substituted polyacrylamide hydrogels for embolisation and implantation. Biomaterials. 2002;23:2319–27.

    Article  PubMed  CAS  Google Scholar 

  45. Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.

    Article  PubMed  CAS  Google Scholar 

  46. Gabizon A, Papahadjopoulos D. The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta. 1992;1103:94–100.

    Article  PubMed  CAS  Google Scholar 

  47. Villiers CL, Villiers MB, Marche PN. Role of the complement C3 protein in the control of the specific immune response. Ann Biol Clin (Paris). 1999;57:127–35.

    CAS  Google Scholar 

  48. Aqil A, Vasseur S, Duguet E, Passirani C, Benoît JP, Roch A, et al. PEO coated magnetic nanoparticles for biomedical application. Eur Polymer J. 2008;44:3191–9.

    Article  CAS  Google Scholar 

  49. Butsele KV, Cajot S, Vlierberghe SV, Dubruel P, Passirani C, Benoit J-P, et al. pH-responsive flower-type micelles formed by a biotinylated poly(2-vinylpyridine)-block-poly(ethylene oxide)-block-poly(E-caprolactone) triblock copolymer. Adv Func Mater. 2009;19:1416–25.

    Article  CAS  Google Scholar 

  50. Van Butsele K, Sibret P, Fustin CA, Gohy JF, Passirani C, Benoit JP, et al. Synthesis and pH-dependent micellization of diblock copolymer mixtures. J Colloid Interface Sci. 2009;329:235–43.

    Article  PubMed  CAS  Google Scholar 

  51. Layre A, Couvreur P, Chacun H, Richard J, Passirani C, Requier D, et al. Novel composite core-shell nanoparticles as busulfan carriers. J Control Release. 2006;111:271–80.

    Article  PubMed  CAS  Google Scholar 

  52. Rieger J, Passirani C, Benoit J-P, Van Butsele K, Jérôme R, Jérôme C. Synthesis of amphiphilic copolymers of poly(ethylene oxide) and poly(&egr;-caprolactone) with different architectures, and their role in the preparation of stealthy nanoparticles. Adv Funct Mater. 2006;16:1506–14.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Myriam Moreau, Christina Hubert (Inserm U646) and Pierre Legras (Animalerie Hospitalo-Universitaire,CHU, Angers, France) for technical support, as well as Dr. Alain Chevalier (Laboratoire d’Immunologie et Allergologie, Espace Centre Hospitalio-Universitaire d’Angers) for normal human serum supplies. We would like also to thank Robert Filmon and Romain Mallet from the Service Commun d’Imagerie et d’Analyses Microscopiques and Michel Terray from Malvern Instruments. A. Paillard was supported by a grant from Le comité départemental de la Ligue Contre le Cancer. This work was also supported by the Cancéropôle Grand-Ouest and by la Ligue National Contre le Cancer via Equipe Labellisée 2007 funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Passirani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paillard, A., Passirani, C., Saulnier, P. et al. Positively-Charged, Porous, Polysaccharide Nanoparticles Loaded with Anionic Molecules Behave as ‘Stealth’ Cationic Nanocarriers. Pharm Res 27, 126–133 (2010). https://doi.org/10.1007/s11095-009-9986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9986-z

KEY WORDS

Navigation