Skip to main content

Advertisement

Log in

Formulation and In Vitro-In Vivo Evaluation of Black Raspberry Extract-Loaded PLGA/PLA Injectable Millicylindrical Implants for Sustained Delivery of Chemopreventive Anthocyanins

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to formulate and evaluate freeze-dried black raspberry (FBR) ethanol extract (RE) loaded poly(DL-lactic-co-glycolic acid) (PLGA) and poly(DL-lactic acid) (PLA) injectable millicylindrical implants for sustained delivery of chemopreventive FBR anthocyanins (cyanidin-3-sambubioside (CS), cyanidin-3-glucoside (CG) and cyanidin-3-rutinoside (CR)).

Methods

Identification and quantitation of CS, CG, and CR in RE was performed by mass spectroscopy and HPLC. RE:triacetyl-β-cyclodextrin (TA-β-CD) inclusion complex (IC) was prepared by a kneading method and characterized by X-ray diffraction (XRD), nuclear magnetic resonance spectroscopy (NMR) and UV-visible spectroscopy. RE or RE:TA-β-CD IC-loaded PLGA or PLA implants were prepared by a solvent extrusion method. In vitro and in vivo controlled release studies were conducted in phosphate-buffered saline Tween-80 (pH 7.4, 37°C) and after subcutaneous administration in male Sprague-Dawley rats, respectively. Anthocyanins were quantified by HPLC at 520 nm.

Results

The content of CS, CG, and CR in RE was 0.2, 1.5, and 3.5 wt%, respectively. The chemical stability of anthocyanins in solution was determined to be pH-dependent, and their degradation rate increased with an increase in pH from 2.4 to 7.4. PLGA/PLA millicylindrical implants loaded with 5 or 10 wt% RE exhibited a high initial burst and short release duration of anthocyanins (35–52 and 80–100% CG + CR release after 1 and 14 days, respectively). The cause for rapid anthocyanins release was linked to higher polymer water uptake and porosity associated with the high osmolytic components of large non-anthocyanin fraction of RE. XRD, 1H NMR and UV-visible spectroscopy indicated that the non-anthocyanin fraction molecules of RE formed an IC with TA-β-CD, decreasing the hydrophilicity of RE. Formation of an IC with hydrophobic carrier, TA-β-CD, provided better in vitro/in vivo sustained release of FBR anthocyanins (16–24 and 97–99% CG + CR release, respectively, after 1 and 28 days from 20 wt% RE:TA-β-CD IC/PLA implants) over 1 month, owing to reduced polymer water uptake and porosity.

Conclusion

PLA injectable millicylindrical implants loaded with RE:TA-β-CD IC are optimal dosage forms for 1-month slow and continuous delivery of chemopreventive FBR anthocyanins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. Jemal A, Siegel R, Ward E, Hao YP, Xu JQ, Murray T, et al. Cancer statistics. CA-Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  2. Braakhuis BJM, Tabor MP, Leemans CR, van der Waal I, Snow GB, Brakenhoff RH. Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular techniques provide new insights and definitions. Head Neck-J Sci Spec. 2002;24:198–206.

    Article  Google Scholar 

  3. Malone JP, Stephens JA, Grecula JC, Rhoades CA, Ba BAG, Ghaheri BA, et al. Disease control, survival, and functional outcome after multimodal treatment for advanced-stage tongue base cancer. Head Neck-J Sci Spec. 2004;26:561–72.

    Article  Google Scholar 

  4. Pathak KA, Gupta S, Talole S, Khanna V, Chaturvedi P, Deshpande MS, et al. Advanced squamous cell carcinoma of lower gingivobuccal complex: patterns of spread and failure. Head Neck-J Sci Spec. 2005;27:597–602.

    Article  Google Scholar 

  5. Desai KGH, Mallery SR, Schwendeman SP. Formulation and characterization of injectable poly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor. Pharm Res. 2008;25:586–97.

    Article  CAS  PubMed  Google Scholar 

  6. Mallery SR, Zwick JC, Pei P, Tong M, Larsen PE, Shumway BS, et al. Topical application of a bioadhesive black raspberry gel modulates gene expression and reduces cyclooxygenase 2 protein in human premalignant oral lesions. Cancer Res. 2008;68:4945–57.

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigo KA, Rawal Y, Renner RJ, Schwartz SJ, Tian QG, Larsen PE, et al. Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries, Symposium on Berries in Cancer Prevention. Lahti: Lawrence Erlbaum Assoc Inc; 2004. p. 58–68.

    Google Scholar 

  8. Rodrigo KA, Rawal Y, Renner RJ, Schwartz SJ, Tian QG, Larsen PE, et al. Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries. Nutr Cancer. 2006;54:58–68.

    Article  CAS  PubMed  Google Scholar 

  9. Shumway BS, Kresty LA, Larsen PE, Zwick JC, Lu B, Field HW, et al. Effects of a topically applied bioadhesive berry gel on loss of heterozygosity indices in premalignant oral lesions. Clin Cancer Res. 2008;14:2421–30.

    Article  PubMed  Google Scholar 

  10. Ugalde CM, Liu ZF, Ren C, Chan KK, Rodrigo KA, Ling Y, et al. Distribution of anthocyanins delivered from a bioadhesive black raspberry gel following topical intraoral application in normal healthy volunteers. Pharm Res. 2009;26:977–86.

    Article  CAS  PubMed  Google Scholar 

  11. Tian QG, Giusti MM, Stoner GD, Schwartz SJ. Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring. J Chromatogr A. 2005;1091:72–82.

    Article  CAS  PubMed  Google Scholar 

  12. Kresty LA, Morse MA, Morgan C, Carlton PS, Lu J, Gupta A, et al. Chemoprevention of esophageal tumorigenesis by dietary administration of lyophilized black raspberries. Cancer Res. 2001;61:6112–9.

    CAS  PubMed  Google Scholar 

  13. Mallery SR, Stoner GD, Larsen PE, Fields HW, Rodrigo KA, Schwartz SJ, et al. Formulation and in-vitro and in-vivo evaluation of a mucoadhesive gel containing freeze dried black raspberries: implications for oral cancer chemoprevention. Pharm Res. 2007;24:728–37.

    Article  CAS  PubMed  Google Scholar 

  14. Stoner GD, Sardo C, Apseloff G, Mullet D, Wargo W, Pound V, et al. Pharmacokinetics of anthocyanins and ellagic acid in healthy volunteers fed freeze-dried black raspberries daily for 7 days. J Clin Pharmacol. 2005;45:1153–64.

    Article  CAS  PubMed  Google Scholar 

  15. Tian QG, Giusti MM, Stoner GD, Schwartz SJ. Urinary excretion of black raspberry (Rubus occidentalis) anthocyanins and their metabolites. J Agric Food Chem. 2006;54:1467–72.

    Article  CAS  PubMed  Google Scholar 

  16. Hecht SS, Huang CS, Stoner GD, Li JX, Kenney PMJ, Sturla SJ, et al. Identification of cyanidin glycosides as constituents of freeze-dried black raspberries which inhibit anti-benzo[a]pyrene-7, 8-diol-9, 10-epoxide induced NF kappa B and AP-1 activity. Carcinogenesis. 2006;27:1617–26.

    Article  CAS  PubMed  Google Scholar 

  17. Huang CS, Li JX, Song L, Zhang DY, Tong QS, Ding M, et al. Black raspberry extracts inhibit benzo(a)pyrene Diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-Kinase/Akt pathway. Cancer Res. 2006;66:581–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wang LS, Hecht SS, Carmella SG, Yu NX, Larue B, Henry C, et al. Anthocyanins in black raspberries prevent esophageal tumors in rats. Cancer Prev Res. 2009;2:84–93.

    Article  Google Scholar 

  19. Mallery SR, Pei P, Kang JC, Ness GM, Ortiz R, Touhalisky JE, et al. Controlled-release of doxorubicin from poly(lactide-co-glycolide) microspheres significantly enhances cytotoxicity against cultured AIDS-related kaposi’s sarcoma cells. Anticancer Res. 2000;20:2817–25.

    CAS  PubMed  Google Scholar 

  20. Weinberg BD, Ai H, Blanco E, Anderson JM, Gao JM. Antitumor efficacy and local distribution of doxorubicin via intratumoral delivery from polymer millirods. J Biomed Mater Res A. 2007;81A:161–70.

    Article  CAS  Google Scholar 

  21. Weinberg BD, Blanco E, Lempka SF, Anderson JM, Exner AA, Gao JM. Combined radiofrequency ablation and doxorubicin-eluting polymer implants for liver cancer treatment. J Biomed Mater Res A. 2007;81A:205–13.

    Article  CAS  Google Scholar 

  22. Mullen W, Lean MEJ, Crozier A. Rapid characterization of anthocyanins in red raspberry fruit by high-performance liquid chromatography coupled to single quadrupole mass spectrometry. J Chromatogr A. 2002;966:63–70.

    Article  CAS  PubMed  Google Scholar 

  23. Tian QG, Giusti MM, Stoner GD, Schwartz SJ. Characterization of a new anthocyanin in black raspberries (Rubus occidentalis) by liquid chromatography electrospray ionization tandem mass spectrometry. Food Chem. 2006;94:465–8.

    Article  CAS  Google Scholar 

  24. Wu XL, Prior RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem. 2005;53:2589–99.

    Article  CAS  PubMed  Google Scholar 

  25. Kirca A, Ozkan M, Cemeroglu B. Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem. 2007;101:212–8.

    Article  CAS  Google Scholar 

  26. Hubbermann EM, Heins A, Stockmann H, Schwarz K. Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. Eur Food Res Technol. 2006;223:83–90.

    Article  CAS  Google Scholar 

  27. Xiong SY, Melton LD, Easteal AJ, Siew D. Stability and antioxidant activity of black currant anthocyanins in solution and encapsulated in glucan gel. J Agric Food Chem. 2006;54:6201–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry. 2003;64:923–33.

    Article  CAS  PubMed  Google Scholar 

  29. Knobloch TJ, Casto BC, Kresty LA, Stoner GD, D’Ambrosio SM, Mallery SR, et al. Bench to bedside: chemoprevention of oral cancer by black raspberries. Cancer Epidem Biomar. 2005;14:2751S–2.

    Google Scholar 

  30. Casto BC, Kresty LA, Kraly CL, Pearl DK, Knobloch TJ, Schut HA, et al. Chemoprevention of oral cancer by black raspberries. Anticancer Res. 2002;22:4005–15.

    CAS  PubMed  Google Scholar 

  31. Blanco E, Weinberg BD, Stowe NT, Anderson JM, Gao JM. Local release of dexamethasone from polymer millirods effectively prevents fibrosis after radiofrequency ablation. J Biomed Mater Res A. 2006;76:174–82.

    PubMed  Google Scholar 

  32. Shahidi F, Naczk M. Phenolics in food and nutraceuticals. Boca Raton: CRC; 2004.

    Google Scholar 

  33. Dai J, Gupte A, Gates L, Mumper RJ. A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Food Chem Toxicol. 2009;47:837–47.

    Article  CAS  PubMed  Google Scholar 

  34. Fernandes CM, Ramos P, Falcao AC, Veiga FJB. Hydrophilic and hydrophobic cyclodextrins in a new sustained release oral formulation of nicardipine: in vitro evaluation and bioavailability studies in rabbits. J Controlled Release. 2003;88:127–34.

    Article  CAS  Google Scholar 

  35. Ikeda Y, Kimura K, Hirayama F, Arima H, Uekama K. Controlled release of a water-soluble drug, captopril, by a combination of hydrophilic and hydrophobic cyclodextrin derivatives. J Controlled Release. 2000;66:271–80.

    Article  CAS  Google Scholar 

  36. Fischer W, Klokkers K. Crystalline cyclodextrin complexes of ranitidine hydrochloride, process for their preparation and pharmaceutical compositions containing the same. US Patent:5,665,767; 1997.

  37. Rao KR, Bhanumathi N, Yadav JS, Krishnaveni NS. Inclusion complex of rifampicin, an anti-tubercular drug, with β-cyclodextrin or 2-hydroxypropyl-β-cyclodextrin and a process thereof. US Patent:7,001,893; 2006.

  38. Huh KM, Ooya T, Sasaki S, Yui N. Polymer inclusion complex consisting of poly(epsilon-lysine) and α-cyclodextrin. Macromolecules. 2001;34:2402–4.

    Article  CAS  Google Scholar 

  39. Amato ME, Lipkowitz KB, Lombardo GM, Pappalardo GC. High-field NMR spectroscopic techniques combined with molecular dynamics simulations for the study of the inclusion complexes of α- and β-cyclodextrins with the cognition activator 3-phenoxypyridine sulphate (CI-844). Magn Reson Chem. 1998;36:693–705.

    Article  CAS  Google Scholar 

  40. Beni S, Szakacs Z, Csernak O, Barcza L, Noszal B. Cyclodextrin/imatinib complexation: binding mode and charge dependent stabilities. Eur J Pharm Sci. 2007;30:167–74.

    Article  CAS  PubMed  Google Scholar 

  41. Fernandes CM, Carvalho RA, da Costa SP, Veiga FJB. Multimodal molecular encapsulation of nicardipine hydrochloride by β-cyclodextrin, hydroxypropyl-β-cyclodextrin and triacetyl-β-cyclodextrin in solution. Structural studies by 1H NMR and ROESY experiments. Eur J Pharm Sci. 2003;18:285–96.

    Article  CAS  PubMed  Google Scholar 

  42. Ramusino MC, Bartolomei M, Gallinella B. 1H NMR, UV and circular dichroism study of inclusion complex formation between the 5-lipoxygenase inhibitor zileuton and β- and γ-cyclodextrins. J Inclus Phenom Mol. 1998;32:485–98.

    Article  CAS  Google Scholar 

  43. Djedaini F, Lin SZ, Perly B, Wouessidjewe D. High-field nuclear-magnetic-resonance techniques for the investigation of a β-cyclodextrin-indomethacin inclusion complex. J Pharm Sci. 1990;79:643–6.

    Article  CAS  PubMed  Google Scholar 

  44. Ma DQ, Rajewski RA, Vander Velde D, Stella VJ. Comparative effects of (SBE)(7 m)-beta-CD and HP-beta-CD on the stability of two anti-neoplastic agents, melphalan and carmustine. J Pharm Sci. 2000;89:275–87.

    Article  CAS  PubMed  Google Scholar 

  45. Ding AG, Schwendeman SP. Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm Res. 2008;25:2041–52.

    Article  CAS  PubMed  Google Scholar 

  46. Ding AG, Shenderova A, Schwendeman SP. Prediction of microclimate pH in poly(lactic-co-glycolic acid) films. J Am Chem Soc. 2006;128:5384–90.

    Article  CAS  PubMed  Google Scholar 

  47. Shenderova A, Burke TG, Schwendeman SP. Stabilization of 10-hydroxycamptothecin in poly(lactide-co-glycolide) microsphere delivery vehicles. Pharm Res. 1997;14:1406–14.

    Article  CAS  PubMed  Google Scholar 

  48. Shenderova A, Burke TG, Schwendeman SP. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm Res. 1999;16:241–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENT

This study was supported by NIH R01 CA95901 and NIH R01 CA129609. We thank Dr. Scott Woehler, College of Pharmacy, University of Michigan, for the technical assistance with the NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Schwendeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, K.G.H., Olsen, K.F., Mallery, S.R. et al. Formulation and In Vitro-In Vivo Evaluation of Black Raspberry Extract-Loaded PLGA/PLA Injectable Millicylindrical Implants for Sustained Delivery of Chemopreventive Anthocyanins. Pharm Res 27, 628–643 (2010). https://doi.org/10.1007/s11095-009-0038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0038-5

KEY WORDS

Navigation