Skip to main content
Log in

Acidic Microclimate pH Distribution in PLGA Microspheres Monitored by Confocal Laser Scanning Microscopy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The acidic microclimate pH (µpH) distribution inside poly(lactic-co-glycolic acid) (PLGA) microspheres was monitored quantitatively as a function of several formulation variables.

Methods

A ratiometric method by confocal laser scanning microscopy with Lysosensor yellow/blue® dextran was adapted from those previously reported, and µpH distribution kinetics inside microspheres was examined during incubation under physiologic conditions for 4 weeks. Effects of PLGA molecular weight (MW) and lactic/glycolic acid ratio, microspheres size and preparation method, and polymer blending with poly(ethylene glycol) (PEG) were evaluated.

Results

µpH kinetics was accurately sensed over a broadly acidic range (2.8 < µpH < 5.8) and was more acidic and variable inside PLGA with lower MW and lactic/glycolic acid ratio. Lower µpH was found in larger microspheres of lower MW polymers, but size effects for lactic-rich polymers were insignificant during 4 weeks. Microspheres prepared by the oil-in-oil emulsion method were less acidic than those prepared by double emulsion, and blending PLGA 50/50 with 20% PEG increased µpH significantly (µpH > 5 throughout incubation).

Conclusions

Coupling this method with that previously developed (SNARF-1® dextran for µpH 5.8–8.0) should provide microclimate pH mapping over the entire useful pH range (2.8–8.0) for optimization of PLGA delivery of pH-sensitive bioactive substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. P. Schwendeman. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit. Rev. Ther. Drug Carrier Sys. 19:73–98 (2002).

    Article  CAS  Google Scholar 

  2. S. P. Schwendeman, H. R. Costantino, R. K. Gupta, and R. Langer. Peptide, protein, and vaccine delivery from implantable polymeric systems. Progress and challenges. In K. Park (ed.), Controlled Drug Delivery, American Chemical Society, Washington, D. C., 1997, pp. 229–267.

    Google Scholar 

  3. R. Langer, and J. P. Vacanti. Tissue engineering. Science. 260:920–926 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. R. Langer. Controlled release of a therapeutic protein. Nat. Med. 2:742–743 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. E. Mathiowitz, J. Jacob, Y. Jong, G. Carino, D. Chickering, P. Chaturvedi, C. Santos, K. Vijayaraghavan, S. Montgomery, M. Bassett, and C. Morrell. Biological erodable microspheres as potential oral delivery systems. Nature. 386:410–414 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. O. L. Johnson, J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. Jones, and S. D. Putney. A month-long effect from a single injection of microencapsulated human growth hormone. Nat. Med. 2:795–799 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. H. Okada, and H. Toguchi. Biodegradable microspheres in drug delivery. Crit. Rev. Ther. Drug Carrier Sys. 12:1–99 (1995).

    CAS  Google Scholar 

  8. H. Okada. One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv. Drug Del. Rev. 28:43–70 (1997).

    Article  CAS  Google Scholar 

  9. K. Fu, A. M. Klibanov, and R. Langer. Protein stability in controlled-release systems. Nat Biotechnol. 18:24–25 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. S. D. Putney, and P. A. Burke. Improved protein therapeutics with sustained-release formulations. Nat. Biotechnol. 16:478 (1998).

    Article  CAS  Google Scholar 

  11. S. D. Putney, and P. A. Burke. Improved protein therapeutic with sustained-release formulations. Nat. Biotechnol. 16:153–157 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. M. Stern, K. Ulrich, D. M. Geddes, and E. W. F. W. Alton. Poly (D, L-lactic-co-glycolic acid)/DNA microspheres to facilitate prolonged transgene expression in airway epithelium in vitro, ex vivo and in vivo. Gene Therapy. 10:1282–1288 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. A. Shenderova, T. G. Burke, and S. P. Schwendeman. The acidic microclimate in poly(lactic-co-glycolic acid) microspheres stabilizes camptothecins. Pharm. Res. 16:241–248 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. T. G. Park. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials. 16:1123–1130 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. T. Uchida, A. Yagi, Y. Oda, Y. Nakada, and S. Goto. Instability of bovine insulin in poly(lactic-co-glycolic acid) (PLGA) microspheres. Chem. Pharm. Bull. 44:235–236 (1996).

    PubMed  CAS  Google Scholar 

  16. G. Zhu, S. R. Mallery, and S. P. Schwendeman. Stabilization of proteins encapsulated in injectable poly(lactic-co-glycolic acid). Nat. Biotechnol. 18:52–57 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. W. Jiang, and S. P. Schwendeman. Stabilization of tetanus toxoid encapsulated in PLGA microspheres. Molec. Pharmaceutics, in press.

  18. J. Kang, and S. P. Schwendeman. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in poly(D,L-lactic-co-glycolic acid) implants. Biomaterials. 23:239–245 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. P. A. Burke. Determination of internal pH in PLGA microspheres using 31P NMR spectroscopy. Proc. Int. Symp. Control. Release Bioact. Mater. 23:133–134 (1996).

    Google Scholar 

  20. A. Brunner, K. Mader, and A. Göpferich. pH and osmotic pressure inside biodegradable microspheres during erosion. Pharm. Res. 16:847–853 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. A. Shenderova, A. G. Ding, and S. P. Schwendeman. Potentiometric method for determination of microclimate pH in poly(lactic-co-glycolic) films. Macromolecules. 37:10052–10058 (2004).

    Article  CAS  Google Scholar 

  22. K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 17:100–106 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. L. Li, and S. P. Schwendeman. Mapping meutral microclimate pH in PLGA microspheres. J. Control. Rel. 101:163–173 (2005).

    Article  CAS  Google Scholar 

  24. H. Okada, Y. Doken, Y. Ogawa, and H. Toguchi. Preparation of three-month depot injectable microspheres of leuprorelin acetate using biodegradable polymers. Pharm. Res. 11:1143–1147 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. J. W. McGinity, and P. B. O’Donnell. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Del. Rev. 28:25–42 (1997).

    Article  Google Scholar 

  26. F. Boury, H. Marchais, J. E. Proust, and J. P. Benoit. Bovine serum albumin release from poly(.alpha.-hydroxy acid) microspheres: effects of polymer molecular weight and surface properties. J. Control. Rel. 45:75–86 (1997).

    Article  CAS  Google Scholar 

  27. W. Jiang, and S. P. Schwendeman. Stabilization of a model formalinized protein antigen encapsulated in poly(lactic-co-glycolic acid)-based microspheres. J. Pharm. Sci. 90:1558–1569 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. W. Jiang, and S. P. Schwendeman. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactic) and poly(ethylene glycol) microsphere blends. Pharm. Res. 18:878–885 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. D. Perrin, and B. Dempsey. Buffers for pH and metal ion control. Halsted Press, New York, N. Y., 1979.

    Google Scholar 

  30. J. Kang, and S. P. Schwendeman. Determination of diffusion coefficient of a small hydrophobic probe in poly(lactic-co-glycolic acid) microparticles by laser scanning confocal microscopy. Macromolecules. 36:1324–1330 (2003).

    Article  CAS  Google Scholar 

  31. A. G. Ding, A. Shenderova, and S. P. Schwendeman. Prediction of microclimate pH in poly(lactic-co-glycolic acid) films. J. Am. Chem. Soc. 128:5384–5390 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. A. G. Ding, and S. P. Schwendeman. Determination of water-soluble acid distribution in poly(lactic-co-glycolic acid). J. Pharm. Sci. 93:322–331 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. M. A. Tracy, K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, and Y. Zhang. Factors affecting the degradation rate of poly(lactic-co-glycolic acid) microspheres in vivo and in vitro. Biomaterials. 20:1057–1062 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. G. Zhu. Stabilization and controlled release of proteins encapsulated in poly(lactic-glycolic acid) delivery systems, Ph.D. thesis, The Ohio State University, 1999.

  35. A. G. Ding. Mechanistic evaluation of acidic microclimate pH development in biodegradable poly (lactic-co-glycolic acid) delivery systems, Ph.D thesis, University of Michigan, 2005.

  36. J. Kang, and S. P. Schwendeman. Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Mol. Pharm. 4:104–118 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. F. G. Hutchinson, and B. J. A. Furr. Biodegradable polymer systems for the sustained release of polypeptides. J. Control. Release. 13:279–294 (1990).

    Article  CAS  Google Scholar 

  38. E. C. Lavelle, M. K. Yeh, A. G. A. Coombes, and S. S. Davis. The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Vaccine. 17:512–529 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH HL 68345 and a Univ. of Michigan Barbour Fellowship to A.G. Ding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Schwendeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, A.G., Schwendeman, S.P. Acidic Microclimate pH Distribution in PLGA Microspheres Monitored by Confocal Laser Scanning Microscopy. Pharm Res 25, 2041–2052 (2008). https://doi.org/10.1007/s11095-008-9594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9594-3

KEY WORDS

Navigation