Skip to main content

Advertisement

Log in

Leakiness and Size Exclusion of Paracellular Channels in Cultured Epithelial Cell Monolayers–Interlaboratory Comparison

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine and compare the paracellular characteristics of permeability (Papp) of Caco-2, MDCK, and 2/4/A1 cell lines.

Methods

The Papp data from 14 studies were analyzed by weighted nonlinear regression in terms of the paracellular parameters: porosity-pathlength (ε/δ), pore radius (R), and electrostatic potential drop (Δφ). Aqueous diffusivities, Daq, for the analysis, were empirically determined. The required hydrodynamic radii, rHYD, were estimated without knowledge of compound density. Mannitol iso-paracellular profiles allowed comparisons of “leakiness” across labs.

Results

Daq (37°C) was predicted as 9.9 × 10−5 MW−0.453; rHYD = (0.92 + 21.8 MW−1)·rSE, where rSE is the Stokes-Einstein radius. Values of pore radius ranged from 4.0(±0.1) to 18(±3) Å, with the 2/4/A1 indicating the largest pores. The ε/δ capacity factor ranged from 0.2 (±0.1) to 69 (±5) cm−1, with most values <1.5 cm−1. The average potential drop for Caco-2 models was Δφ Caco-2wt avg  = −43 ± 20 mV. The paracellular model predicted measured log Papp values with pooled r 2 = 0.93 and s = 0.17 (n = 108).

Conclusion

R and ε/δ are negatively correlated to a large extent. Papp can be rate-limited by either factor, with a wide range of possible combinations still indicating nearly constant leakiness for a given marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol. 1963;17:375–412.

    Article  CAS  PubMed  Google Scholar 

  2. Diamond JM. The epithelial junction: bridge, gate, and fence. Physiologist. 1977;20:10–8.

    CAS  PubMed  Google Scholar 

  3. Fleisher D. Biological transport phenomena in the gastrointestinal tract: cellular mechanisms. In: Amidon GL, Lee PI, Topp EM, editors. Transport processes in pharmaceutical systems. New York: Marcel Dekker, Inc; 2000. p. 147–84.

    Google Scholar 

  4. Oliver RE, Jones AF, Rowland M. What surface of the intestinal epithelium is effectively available to permeating drugs? J Pharm Sci. 1998;87:634–9.

    Article  CAS  PubMed  Google Scholar 

  5. Sugano K. Introduction to computational oral absorption simulation. Expert Opin Drug Metab Toxicol. 2009;5:259–93.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson JP. Surface area of the small intestine in man. Gut. 1967;8:618–21.

    Article  CAS  PubMed  Google Scholar 

  7. Moog F. The lining of the small intestine. Sci Amer. 1981;245(11):154–76.

    Article  CAS  PubMed  Google Scholar 

  8. Pappenheimer JR. Scaling of dimensions of small intestines in non-ruminant eutherian mammals and its significance for absorptive mechanisms. Compar Biochem Physiol A. 1998;121:45–58.

    Article  CAS  Google Scholar 

  9. Desesso JM, Williams AL. Contrasting the gastrointestinal tracts of mammals: factors that influence absorption. Annual Rep Med Chem. 2008;43:353–71.

    Article  CAS  Google Scholar 

  10. Ho NFH, Raub TJ, Burton PS, Barsuhn CL, Adson A, Audus KL, et al. Quantitative approaches to delineate passive transport mechanisms in cell culture monolayers. In: Amidon GL, Lee PI, Topp EM, editors. Transport processes in pharmaceutical systems. New York: Marcel Dekker; 2000. p. 219–316.

    Google Scholar 

  11. Madara JL. Functional morphology of the small intestine. In: Schultz SG, editors. Handbook of Physiology, Sec. 6: The Gastrointestinal System, Am. Physiol. Soc.: Bethesda; 1991. p. 92.

  12. Artursson P, Ungell A-L, Löfroth J-E. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm Res. 1993;10:1123–9.

    Article  CAS  PubMed  Google Scholar 

  13. Adson A, Raub TJ, Burton PS, Barsuhn CL, Hilgers AR, Audus KL, et al. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci. 1994;83:1529–36.

    Article  CAS  PubMed  Google Scholar 

  14. Knipp GT, Ho NFH, Barsuhn CL, Borchardt RT. Paracellular diffusion in Caco-2 cell monolayers: effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J Pharm Sci. 1997;86:1105–10.

    Article  CAS  PubMed  Google Scholar 

  15. Pade V, Stavchansky S. Estimation of the relative contributions of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm Res. 1997;14:1210–5.

    Article  CAS  PubMed  Google Scholar 

  16. Liang E, Chessic K, Yazdanian M. Evaluation of an accelerated Caco-2 cell permeability model. J Pharm Sci. 2000;89:336–45.

    Article  CAS  PubMed  Google Scholar 

  17. Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol. 2001;281:C388–97.

    CAS  PubMed  Google Scholar 

  18. Tavelin S, Taipalensuu J, Söderber L, Morrison R, Chong S, Artursson P. Prediction of oral absorption of low-permeability drugs using small intestine-like 2/4/A1 cell monolayers. Pharm Res. 2003;20:397–405.

    Article  CAS  PubMed  Google Scholar 

  19. Alsenz J, Haenel E. Development of a 7-day, 96-well Caco-2 permeability assay with high throughput direct UV compound analysis. Pharm Res. 2003;20:1961–9.

    Article  CAS  PubMed  Google Scholar 

  20. Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, et al. In vitro models for the blood-brain barrier. Toxicol In Vitro. 2009;19:299–334.

    Article  CAS  Google Scholar 

  21. Avdeef A, Artursson P, Neuhoff S, Lazarova L, Gråsjö J, Tavelin S. Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA pK fluxa method. Eur J Pharm Sci. 2005;24:333–49.

    Article  CAS  PubMed  Google Scholar 

  22. Linnankoski J, Mäkelä J, Palmgren J, Mauriala T, Vedin C, Ungell A-L, Lazorova L, Artursson P, Urtti A, Yliperttula M. Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models. J Pharm Sci. 2009;(Epub ahead of print: doi:10.1002/jps.21961).

  23. Flynn GL, Yalkowsky SH, Roseman TJ. Mass transport phenomena and models: theoretical concepts. J Pharm Sci. 1974;63:479–510.

    Article  CAS  PubMed  Google Scholar 

  24. Avdeef A. Absorption and drug development. New York: Wiley-Interscience; 2003. p. 207–8.

    Book  Google Scholar 

  25. Cussler EL. Diffusion—mass transfer in fluid systems. 2nd ed. Cambridge: Cambridge University Press; 1997. p. 111–21.

    Google Scholar 

  26. Tam KY, Avdeef A, Tsinman O, Sun N. The permeation of amphoteric drugs through artificial membranes—an in combo absorption model based on paracellular and transmembrane permeability. J Med Chem. 2009;(Epub ahead of print: doi:10.1021/jm901421c).

  27. Weast RC, Astle MJ, editors. CRC handbook of chemistry and physics. 60th ed. Boca Raton: CRC; 1979–1980. p. F-62.

    Google Scholar 

  28. Lide DR, editor. CRC handbook of chemistry and physics. 78th ed. Boca Raton: CRC; 1997–1998. p. 5.94–5.

    Google Scholar 

  29. Seki T, Mochida J, Okamoto M, Hosoya O, Juni K, Morimoto K. Measurement of diffusion coefficients of parabens and steroids in water and 1-octanol. Chem Pharm Bull. 2003;51:734–6.

    Article  CAS  PubMed  Google Scholar 

  30. Amidon GE, Higuchi WI, Ho NFH. Theoretical and experimental studies of transport of micelle-solubilized solutes. J Pharm Sci. 1982;71:77–84.

    Article  CAS  PubMed  Google Scholar 

  31. Levin VA, Dolginow D, Landahl HD, Yorke C, Csejtey J. Relationship of octanol/water partition coefficient and molecular weight to cellular permeability and partitioning in S49 lymphoma cells. Pharm Res. 1984;1:259–66.

    Article  Google Scholar 

  32. Renkin EM. Filtration, diffusion and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954;38:225–38.

    CAS  PubMed  Google Scholar 

  33. Ruddy SB, Hadzija BW. Iontophoretic permeability of polyethylene glycols through hairless rat skin: application of hydrodynamic theory for hindered transport through liquid-filled pores. Drug Des Discov. 1992;8:207–24.

    CAS  PubMed  Google Scholar 

  34. Chadwick VS, Phillips SF, Hofmann AF. Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). II. Application to normal and abnormal permeability states in man and animals. Gastroenterology. 1977;73:247–51.

    CAS  PubMed  Google Scholar 

  35. Soderholm JD, Olaison G, Kald A, Tagesson C, Sjodahl R. Absorption profiles for polyethylene glycols after regional perfusion and oral load in healthy humans. Digest Dis Sci. 1997;42:853–7.

    Article  CAS  PubMed  Google Scholar 

  36. Maxton DG, Bjarnason I, Reynolds AP, Catt SD, Peters TJ, Menzies IS. Lactulose, 51Cr-labeled ethylenediaminetetracetate, L-rhamnose and polyethylene glycol 400 as probe markers for assessment in vivo of human intestinal permeability. Clin Sci. 1998;71:71–80.

    Google Scholar 

  37. Lennernäs H. Intestinal permeability and its relevance for absorption and elimination. Xenobiotica. 2007;37:1015–51.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENT

Helpful discussions with Dr. Kin Y. Tam (AstraZeneca, UK) and Dr. Kiyohiko Sugano (Pfizer, UK) are gratefully acknowledged. The long-term guiding influence of Prof. Norman F. H. Ho is deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Avdeef.

Additional information

Contribution number 27 in the PAMPA—a Drug Absorption in vitro Model series from pION. Ref. 26 is part 26 in the series.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeef, A. Leakiness and Size Exclusion of Paracellular Channels in Cultured Epithelial Cell Monolayers–Interlaboratory Comparison. Pharm Res 27, 480–489 (2010). https://doi.org/10.1007/s11095-009-0036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0036-7

KEY WORDS

Navigation