Skip to main content

Measurement of Transcellular Transport Rates and Intracellular Drug Sequestration in the Presence of an Extracellular Concentration Gradient

  • Protocol
  • First Online:
Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 910 Accesses

Abstract

In order for a drug to be effective and ultimately successful, it must first gain access to its molecular target at a desired site of action. Conventionally, for the purpose of high-throughput screening of drug candidates during the earliest stages of drug development, transport assays are performed with commercially available, in vitro cell cultures as experimental models. Based on theoretical, physiologically based pharmacokinetics principles, the quantitative measurements obtained with these assays are used to predict drug absorption, distribution, and elimination within the organism. Transcellular drug permeability coefficients, transcellular transport rates, and intracellular drug accumulation can be simultaneously measured using adherent cells grown on porous membrane supports. These measurements are used to elucidate the molecular mechanisms that mediate the transport pathways across epithelial, endothelial, and other cell monolayers, which function to determine drug absorption and distribution within the living organism. In this chapter, we describe the most typical, routine procedures used for measuring the transcellular transport rates and intracellular accumulation of small molecular drugs, in the presence of a drug concentration gradient across a cell monolayer. We will highlight various in vitro cell models that are used to represent different cell barriers in the body. Finally, we will discuss the factors that can cause variations in these experimental measurements and their interpretation, along with the theoretical aspects related to the transcellular transport phenomena driven by extracellular concentration gradients. Therefore, this chapter provides a comprehensive introduction to the quantitative analysis of cellular drug transport, targeting, and disposition. It will serve as a guide to choose the most appropriate in vitro cell culture models, to assist with the interpretation of the data obtained through these experiments, and to outline knowledge gaps and areas of improvement that will be further discussed in the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White RE (2000) High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol 40:133–157

    Article  CAS  PubMed  Google Scholar 

  2. Basavaraj S, Betageri GV (2014) Can formulation and drug delivery reduce attrition during drug discovery and development—review of feasibility, benefits and challenges. Acta Pharm Sin B 4:3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lavé T, Parrott N, Grimm H et al (2007) Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica 37:1295–1310

    Article  PubMed  CAS  Google Scholar 

  4. Balaz S (2009) Modeling kinetics of subcellular disposition of chemicals. Chem Rev 109:1793–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Urban L (2004) The impact of early ADME profiling on drug discovery and development strategy. DDW Drug Discov World 5:73–86

    Google Scholar 

  6. Maltarollo VG, Gertrudes JC, Oliveira PR et al (2015) Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin Drug Metabol Toxicol 11:259–271

    Article  CAS  Google Scholar 

  7. Bohnert T, Prakash C (2011) ADME profiling in drug discovery and development: an overview. In: Encyclopedia of drug metabolism interactions, pp 1–42

    Google Scholar 

  8. Faller B (2008) Artificial membrane assays to assess permeability. Curr Drug Metab 9:886–892

    Article  CAS  PubMed  Google Scholar 

  9. Li C, Wainhaus S, Uss AS et al (2008) High-throughput screening using Caco-2 Cell and PAMPA systems. In: Drug absorption studies. Springer, New York, pp 418–429

    Chapter  Google Scholar 

  10. Jaroch K, Jaroch A, Bojko B (2018) Cell cultures in drug discovery and development: the need of reliable in vitro-in vivo extrapolation for pharmacodynamics and pharmacokinetics assessment. J Pharm Biomed Anal 147:297–312

    Article  CAS  PubMed  Google Scholar 

  11. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175:880–885

    Article  CAS  PubMed  Google Scholar 

  12. Karasov WH (2017) Integrative physiology of transcellular and paracellular intestinal absorption. J Exp Biol 220:2495–2501

    Article  PubMed  Google Scholar 

  13. Balimane PV, Chong S (2005) Cell culture-based models for intestinal permeability: a critique. Drug Discov Today 10:335–343

    Article  CAS  PubMed  Google Scholar 

  14. Washington N, Washington C, Wilson C (2000) Physiological pharmaceutics: barriers to drug absorption. CRC Press, London

    Book  Google Scholar 

  15. Sugano K, Kansy M, Artursson P et al (2010) Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 9:597–614

    Article  CAS  PubMed  Google Scholar 

  16. Tavelin S, Gråsjö J, Taipalensuu J et al (2002) Applications of epithelial cell culture in studies of drug transport. In: Epithelial cell culture protocols. Springer, pp 233–272

    Google Scholar 

  17. DuBuske LM (2005) The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf 28:789–801

    Article  CAS  PubMed  Google Scholar 

  18. Neuhoff S, Ungell A-L, Zamora I et al (2005) pH-dependent passive and active transport of acidic drugs across Caco-2 cell monolayers. Eur J Pharm Sci 25:211–220

    Article  CAS  PubMed  Google Scholar 

  19. Ho NF, Raub TJ, Burton PS et al (2000) Quantitative approaches to delineate passive transport mechanisms in cell culture monolayers. In: Transport processes in pharmaceutical systems. Marcel Dekker, New York, pp 219–316

    Google Scholar 

  20. Martinez MN, Amidon GL (2002) A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 42:620–643

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Shedden K, Rosania GR (2006) A cell-based molecular transport simulator for pharmacokinetic prediction and cheminformatic exploration. Mol Pharm 3:704–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Min KA, Zhang X, Yu J et al (2014) Computational approaches to analyse and predict small molecule transport and distribution at cellular and subcellular levels. Biopharm Drug Dispos 35:15–32

    Article  CAS  PubMed  Google Scholar 

  23. Zheng N, Tsai HN, Zhang X et al (2011) The subcellular distribution of small molecules: a meta-analysis. Mol Pharm 8:1611–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Min KA, Rajeswaran WG, Oldenbourg R et al (2015) Massive bioaccumulation and self-assembly of phenazine compounds in live cells. Adv Sci 2:1500025

    Article  CAS  Google Scholar 

  25. Zhang X, Zheng N, Rosania GR (2008) Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines. J Comput Aided Mol Des 22:629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Logan R, Kong AC, Krise JP (2014) Time-dependent effects of hydrophobic amine-containing drugs on lysosome structure and biogenesis in cultured human fibroblasts. J Pharm Sci 103:3287–3296

    Article  CAS  PubMed  Google Scholar 

  27. Fu D, Zhou J, Zhu WS et al (2014) Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem 6:614–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lennernäs H, Crison JR, Amidon GL (1995) Permeability and clearance views of drug absorption: a commentary. J Pharmacokinet Biopharm 23:333–337

    Article  PubMed  Google Scholar 

  29. Steimer A, Haltner E, Lehr C-M (2005) Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18:137–182

    Article  CAS  PubMed  Google Scholar 

  30. Irvine JD, Takahashi L, Lockhart K et al (1999) MDCK (Madin–Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88:28–33

    Article  CAS  PubMed  Google Scholar 

  31. Yamashita S, Tanaka Y, Endoh Y et al (1997) Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorption. Pharm Res 14:486–491

    Article  CAS  PubMed  Google Scholar 

  32. Reichl S (2008) Cell culture models of the human cornea—a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro. J Pharm Pharmacol 60:299–307

    Article  CAS  PubMed  Google Scholar 

  33. Cabrera-Pérez MÁ, Sanz MB, Sanjuan VM et al (2016) Importance and applications of cell-and tissue-based in vitro models for drug permeability screening in early stages of drug development. In: Concepts and models for drug permeability studies. Elsevier, pp 3–29

    Google Scholar 

  34. Sarmento B, Andrade F, Silva SBd, et al. (2012) Cell-based in vitro models for predicting drug permeability. Expert Opin Drug Metab Toxicol 8:607–621

    Article  CAS  PubMed  Google Scholar 

  35. Lennernäs H, Palm K, Fagerholm U et al (1996) Comparison between active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo. Int J Pharm 127:103–107

    Article  Google Scholar 

  36. Yee S (1997) In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm Res 14:763–766

    Article  CAS  PubMed  Google Scholar 

  37. Reichel A (2009) Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers 6:2030–2049

    Article  CAS  PubMed  Google Scholar 

  38. Sakagami M (2006) In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 58:1030–1060

    Article  CAS  PubMed  Google Scholar 

  39. Tronde A, Bosquillon C, Forbes B (2008) The isolated perfused lung for drug absorption studies. In: Drug absorption studies. Springer, pp 135–163

    Google Scholar 

  40. Cao X, Gibbs ST, Fang L et al (2006) Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res 23:1675–1686

    Article  CAS  PubMed  Google Scholar 

  41. Artursson P, Borchardt RT (1997) Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm Res 14:1655

    Article  CAS  PubMed  Google Scholar 

  42. Lin H, Li H, Cho H-J et al (2007) Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. Biochem Biophys Res Commun 96:341–350

    CAS  Google Scholar 

  43. Grainger CI, Greenwell LL, Lockley DJ et al (2006) Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res 23:1482–1490

    Article  CAS  PubMed  Google Scholar 

  44. Hilgers AR, Conradi RA, Burton PS (1990) Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res 7:902–910

    Article  CAS  PubMed  Google Scholar 

  45. Shah P, Jogani V, Bagchi T et al (2006) Role of Caco-2 cell monolayers in prediction of intestinal drug absorption. Biotechnol Prog 22:186–198

    Article  CAS  PubMed  Google Scholar 

  46. Rothen-Rutishauser B, Blank F, Mühlfeld C et al (2008) In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol 4:1075–1089

    Article  CAS  PubMed  Google Scholar 

  47. Sporty JL, Horálková L, Ehrhardt C (2008) In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opin Drug Metab Toxicol 4:333–345

    Article  CAS  PubMed  Google Scholar 

  48. Volpe DA (2011) Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med Chem 3:2063–2077

    Article  CAS  PubMed  Google Scholar 

  49. Patton JS (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 19:3–36

    Article  CAS  Google Scholar 

  50. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74

    Article  CAS  PubMed  Google Scholar 

  51. Fishman AP (2005) One hundred years of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171:941–948

    Article  PubMed  Google Scholar 

  52. Patton JS, Fishburn CS, Weers JG (2004) The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 1:338–344

    Article  CAS  PubMed  Google Scholar 

  53. Forbes B (2000) Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm Sci Technol Today 3:18–27

    Article  CAS  PubMed  Google Scholar 

  54. Min KA, Talattof A, Tsume Y et al (2013) The extracellular microenvironment explains variations in passive drug transport across different airway epithelial cell types. Pharm Res 30:2118–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suresh MV, Wagner MC, Rosania GR et al (2012) Pulmonary administration of a water-soluble curcumin complex reduces severity of acute lung injury. Am J Respir Cell Mol Biol 47:280–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patton JS, Brain JD, Davies LA et al (2010) The particle has landed—characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulmon Drug Deliv 23:S-71–S-87

    Article  CAS  Google Scholar 

  57. Yu S, Yuan H, Chai G et al (2020) Optimization of inhalable liposomal powder formulations and evaluation of their in vitro drug delivery behavior in Calu-3 human lung epithelial cells. Int J Pharm 586:119570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuehn A, Kletting S, de Souza C-WC et al (2016) Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. ALTEX 33:251–260. https://doi.org/10.14573/altex.1511131

    Article  PubMed  Google Scholar 

  59. Barar J, Asadi M, Mortazavi-Tabatabaei SA et al (2009) Ocular drug delivery; impact of in vitro cell culture models. J Ophthalmic Vis Res 4:238–252

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Juretic M, Jurisic Dukovski B, Krtalic I et al (2017) HCE-T cell-based permeability model: A well-maintained or a highly variable barrier phenotype? Eur J Pharm Sci 104:23–30. https://doi.org/10.1016/j.ejps.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  61. Maharjan P, Jin M, Kim D et al (2019) Evaluation of epithelial transport and oxidative stress protection of nanoengineered curcumin derivative-cyclodextrin formulation for ocular delivery. Arch Pharm Res 42:909–925. https://doi.org/10.1007/s12272-019-01154-9

    Article  CAS  PubMed  Google Scholar 

  62. Kim D, Maharjan P, Jin M et al (2019) Potential albumin-based antioxidant nanoformulations for ocular protection against oxidative stress. Pharmaceutics 11:297. https://doi.org/10.3390/pharmaceutics11070297

    Article  CAS  PubMed Central  Google Scholar 

  63. Amidon GL, Lee PI, Topp EM (1999) Transport processes in pharmaceutical systems. CRC Press, pp 18–70

    Google Scholar 

  64. Brodin B, Steffansen B, Nielsen CU (2010) Passive diffusion of drug substances: the concepts of flux and permeability. Mol Biopharm 135–152

    Google Scholar 

  65. Hamid KA, Katsumi H, Sakane T et al (2009) The effects of common solubilizing agents on the intestinal membrane barrier functions and membrane toxicity in rats. Int J Pharm 379:100–108. https://doi.org/10.1016/j.ijpharm.2009.06.018

    Article  CAS  PubMed  Google Scholar 

  66. O'Driscoll CM, Griffin BT (2008) Biopharmaceutical challenges associated with drugs with low aqueous solubility--the potential impact of lipid-based formulations. Adv Drug Deliv Rev 60:617–624. https://doi.org/10.1016/j.addr.2007.10.012

    Article  CAS  PubMed  Google Scholar 

  67. Hubatsch I, Ragnarsson EG, Artursson P (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2:2111

    Article  CAS  PubMed  Google Scholar 

  68. Min KA, Rosania GR, Kim CK et al (2016) Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers. Arch Pharm Res 39:359–369. https://doi.org/10.1007/s12272-015-0704-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Said HM, Blair JA, Lucas ML et al (1986) Intestinal surface acid microclimate in vitro and in vivo in the rat. J Lab Clin Med 107:412–419

    Google Scholar 

  70. Tsukita S, Yamazaki Y, Katsuno T et al (2008) Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27:6930–6938. https://doi.org/10.1038/onc.2008.344

    Article  CAS  PubMed  Google Scholar 

  71. Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337. https://doi.org/10.1016/s1537-1891(02)00200-8

    Article  CAS  PubMed  Google Scholar 

  72. Karlsson J, Artursson P (1991) A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int J Pharm 71:55–64

    Article  CAS  Google Scholar 

  73. Avdeef A, Artursson P, Neuhoff S et al (2005) Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKaflux method. Eur J Pharm Sci 24:333–349

    Article  CAS  PubMed  Google Scholar 

  74. Adson A, Burton PS, Raub TJ et al (1995) Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers: uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. J Pharm Sci 84:1197–1204. https://doi.org/10.1002/jps.2600841011

    Article  CAS  PubMed  Google Scholar 

  75. Everitt CT, Redwood WR, Haydon DA (1969) Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes. J Theor Biol 22:20–32. https://doi.org/10.1016/0022-5193(69)90077-0

    Article  CAS  PubMed  Google Scholar 

  76. Khanvilkar K, Donovan MD, Flanagan DR (2001) Drug transfer through mucus. Adv Drug Deliv Rev 48:173–193. https://doi.org/10.1016/s0169-409x(01)00115-6

    Article  CAS  PubMed  Google Scholar 

  77. Korjamo T, Heikkinen AT, Waltari P et al (2008) The asymmetry of the unstirred water layer in permeability experiments. Pharm Res 25:1714

    Article  CAS  PubMed  Google Scholar 

  78. Anderson B, Levine AS, Levitt D et al (1988) Physiological measurement of luminal stirring in perfused rat jejunum. Am J Physiol 254:G843–G848

    Article  CAS  PubMed  Google Scholar 

  79. Winne D, Görig H, Müller U (1987) Closed rat jejunal segment in situ: role of pre-epithelial diffusion resistance (unstirred layer) in the absorption process and model analysis. Naunyn Schmiedeberg's Arch Pharmacol 335:204–215

    Article  CAS  Google Scholar 

  80. Avdeef A, Nielsen PE, Tsinman O (2004) PAMPA—a drug absorption in vitro model: 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur J Pharm Sci 22:365–374

    CAS  PubMed  Google Scholar 

  81. Zheng N, Zhang X, Rosania GR (2011) Effect of phospholipidosis on the cellular pharmacokinetics of chloroquine. J Pharmacol Exp Ther 336:661–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang X, Zheng N, Zou P et al (2010) Cells on pores: a simulation-driven analysis of transcellular small molecule transport. Mol Pharm 7:456–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Toropainen E, Ranta V-P, Talvitie A et al (2001) Culture model of human corneal epithelium for prediction of ocular drug absorption. Investig Ophthalmol Vis Sci 42:2942–2948

    CAS  Google Scholar 

  84. Nevala H, Ylikomi T, Tähti H (2008) Evaluation of the selected barrier properties of retinal pigment epithelial cell line ARPE-19 for an in-vitro blood-brain barrier model. Human Exp Toxicol 27:741–749

    Article  CAS  Google Scholar 

  85. Liu F, Soares MJ, Audus KL (1997) Permeability properties of monolayers of the human trophoblast cell line BeWo. Am J Phys Cell Phys 273:C1596–C1604

    Article  CAS  Google Scholar 

  86. Deli MA, Ábrahám CS, Kataoka Y et al (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants to KAM from the National Research Foundation of Korea (NRF) funded by the Korea government, Ministry of Science and ICT (MSIT) (NRF-2017R1C1B5015491) and the Ministry of Education (NRF-2018R1D1A1B07048818) and to GRR from the United States National Institutes of Health (R01GM127787-01A1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoung Ah Min or Gus R. Rosania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Min, K.A., Rosania, G.R. (2021). Measurement of Transcellular Transport Rates and Intracellular Drug Sequestration in the Presence of an Extracellular Concentration Gradient. In: Rosania, G.R., Thurber, G.M. (eds) Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1250-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1250-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1249-1

  • Online ISBN: 978-1-0716-1250-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics