Skip to main content

Advertisement

Log in

Identification of Novel Superior Polycationic Vectors for Gene Delivery by High-throughput Synthesis and Screening of a Combinatorial Library

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Low efficiency and toxicity are two major drawbacks of current non-viral gene delivery vectors. Since DNA delivery to mammalian cells is a multi-step process, generating and searching combinatorial libraries of vectors employing high-throughput synthesis and screening methods is an attractive strategy for the development of new improved vectors because it increases the chance of identifying the most overall optimized vectors.

Materials and Methods

Based on the rationale that increasing the effective molecular weight of small PEIs, which are poor vectors compared to the higher molecular weight homologues but less toxic, raises their transfection efficiency due to better DNA binding, we synthesized a library of 144 biodegradable derivatives from two small PEIs and 24 bi- and oligo-acrylate esters. A 423-Da linear PEI and its 1:1 (w/w) mixture with a 1.8-kDa branched PEI were cross-linked with the acrylates at three molar ratios in DMSO. The resulting polymers were screened for their efficiency in delivering a β-galactosidase expressing plasmid to COS-7 monkey kidney cells. Selected most potent polymers from the initial screen were tested for toxicity in A549 human lung cancer cells, and in vivo in a systemic gene delivery model in mice employing a firefly luciferase expressing plasmid.

Results

Several polycations that exhibited high potency and low toxicity in vitro were identified from the library. The most potent derivative of the linear 423-Da PEI was that cross-linked with tricycle-[5.2.1.0]-decane-dimethanol diacrylate (diacrylate 14), which exhibited an over 3,600-fold enhancement in efficiency over the parent. The most potent mixed PEI was that cross-linked with ethylene glycol diacrylate (diacrylate 4) which was over 850-fold more efficient than the physically mixed parent PEIs. The relative efficiencies of these polymers were even up to over twice as high as that of the linear 22-kDa PEI, considered the “gold standard” for in vitro and systemic gene delivery. The potent cross-linked polycations identified were also less toxic than the 22-kDa PEI. The optimal vector in vivo was the mixed PEI cross-linked with propylene glycol glycerolate diacrylate (diacrylate 7); it mediated the highest gene expression in the lungs, followed by the spleen, with the expression in the former being 53-fold higher compared to the latter. In contrast, the parent PEIs mediated no gene expression at all under similar conditions, and injection of the polyplexes of the 22-kDa PEI at its optimal N/P of 10 prepared under identical conditions killed half of the mice injected.

Conclusions

High-throughput synthesis and transfection assay of a cross-linked library of biodegradable PEIs was proven effective in identifying highly transfecting vectors. The identified vectors exhibited dramatically superior efficiency compared to their parents both in vitro and in an in vivo systemic gene delivery model. The majority of these vectors mediated preferential gene delivery to the lung, and their in vivo toxicity paralleled that in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Kolb, G. Martin, M. Medina, K. Ask, and J. Gauldie. Gene therapy for pulmonary diseases. Chest. 130:879–884 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. C. Bertoni, S. Jarrahian, T. M. Wheeler, Y. Li, E. C. Olivares, M. P. Calos, and T. A. Rando. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc. Natl. Acad. Sci. U S A. 103:419–424 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. M. Carretero, M. J. Escamez, F. Prada, I. Mirones, M. Garcia, A. Holguin, B. Duarte, O. Podhajcer, J. L. Jorcano, F. Larcher, and M. Del Rio. Skin gene therapy for acquired and inherited disorders. Histol. Histopathol. 21:1233–1247 (2006).

    PubMed  CAS  Google Scholar 

  4. S. Oliveira, G. Storm, and R. M. Schiffelers. Targeted Delivery of siRNA. J. Biomed. Biotechnol. 2006:63675 (2006).

    PubMed  Google Scholar 

  5. M. E. Davis. Non-viral gene delivery systems. Curr. Opin. Biotechnol. 13:128–131 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. K. Kodama, Y. Katayama, Y. Shoji, and H. Nakashima. The features and shortcomings for gene delivery of current non-viral carriers. Curr. Med. Chem. 13:2155–2161 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. C. C. Conwell and L. Huang. Recent advances in non-viral gene delivery. Adv. Genet. 53:3–18 (2005).

    PubMed  CAS  Google Scholar 

  8. D. Putnam. Polymers for gene delivery across length scales. Nat. Mater. 5:439–451 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. T. G. Park, J. H. Jeong, and S. W. Kim. Current status of polymeric gene delivery systems. Adv. Drug. Deliv Rev. 58:467–486 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. T. Beardsley. Gene therapy setback. Sci. Am. 282:36–37 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. T. Gura. Hemophilia. After a setback, gene therapy progresses...gingerly. Science 291:1692–1697 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Y. Shou, Z. Ma, T. Lu, and B. P. Sorrentino. Unique risk factors for insertional mutagenesis in a mouse model of XSCID gene therapy. Proc. Natl. Acad. Sci. USA. 103:11730–11735 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. J. M. Wilson, and N. A. Wivel. Potential risk of inadvertent germ-line gene transmission statement from the American Society of Gene Therapy to the NIH Recombinant DNA Advisory Committee, March 12, 1999. Hum. Gene Ther. 10:1593–1595 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. E. Marshall. Gene therapy. Panel reviews risks of germ line changes. Science 294:2268–2269 (2001).

    Google Scholar 

  15. R. I. Mahato. Water insoluble and soluble lipids for gene delivery. Adv. Drug Deliv. Rev. 57:699–712 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. A. Kabanov, J. Zhu, and V. Alakhov. Pluronic block copolymers for gene delivery. Adv. Genet. 53PA:231–261 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. A. Kichler. Gene transfer with modified polyethylenimines. J. Gene Med. 6(Suppl 1):S3–S10 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. C. Dufes, I. F. Uchegbu, and A. G. Schatzlein. Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 57:2177–2202 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. S. L. Goh, N. Murthy, M. Xu, and J. M. Frechet. Cross-linked microparticles as carriers for the delivery of plasmid DNA for vaccine development. Bioconjug. Chem. 15:467–474 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. M. Thomas, and A. M. Klibanov. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA. 99:14640–14645 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. N. P. Gabrielson, and D. W. Pack. Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules 7:2427–2435 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. C. M. Varga, N. C. Tedford, M. Thomas, A. M. Klibanov, L. G. Griffith, and D. A. Lauffenburger. Quantitative comparison of polyethylenimine formulations and adenoviral vectors in terms of intracellular gene delivery processes. Gene Ther. 12:1023–1032 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. J. E. Murphy, T. Uno, J. D. Hamer, F. E. Cohen, V. Dwarki, and R. N. Zuckermann. A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery. Proc. Natl. Acad. Sci. U S A. 95:1517–1522 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. D. M. Lynn, D. G. Anderson, D. Putnam, and R. Langer. Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. 123:8155–8156 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. D. G. Anderson, W. Peng, A. Akinc, N. Hossain, A. Kohn, R. Padera, R. Langer, and J. A. Sawicki. A polymer library approach to suicide gene therapy for cancer. Proc. Natl. Acad. Sci. U S A. 101:16028–16033 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. B. E. Yingyongnarongkul, M. Howarth, T. Elliott, and M. Bradley. DNA transfection screening from single beads. J. Com. Chem. 6:753–760 (2004).

    Article  CAS  Google Scholar 

  27. J. Kloeckner, E. Wagner, and M. Ogris. Degradable gene carriers based on oligomerized polyamines. Eur. J. Pharm. Sci. 29:414–425 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. M. Thomas, J. J. Lu, Q. Ge, C. Zhang, J. Chen, and A. M. Klibanov. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. USA. 102:5679–5684 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. S. M. Zou, P. Erbacher, J. S. Remy, and J. P. Behr. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med. 2:128–134 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. U. Lungwitz, M. Breunig, T. Blunk, and A. Gopferich. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60:247–266 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. N. D. Sonawane, F. C. Szoka, Jr., and A. S. Verkman. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 278:44826–44831 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. A. Kichler, C. Leborgne, E. Coeytaux, and O. Danos. Polyethylenimine-mediated gene delivery: a mechanistic study. J. Gene Med. 3:135–144 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. A. Akinc, M. Thomas, A. M. Klibanov, and R. Langer. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7:657–663 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. M. A. Gosselin, W. Guo, and R. J. Lee. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug. Chem. 12:989–994 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. K. Kunath, A. von Harpe, D. Fischer, H. Petersen, U. Bickel, K. Voigt, and T. Kissel. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release 89:113–125 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. M. Thomas, Q. Ge, J. J. Lu, J. Chen, and A. M. Klibanov. Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm. Res. 22:373–380 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. S. E. Reed, E. M. Staley, J. P. Mayginnes, D. J. Pintel, and G. E. Tullis. Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J. Virol. Methods 138:85–98 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114:100–109 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. P. Chollet, M. C. Favrot, A. Hurbin, and J. L. Coll. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J. Gene Med. 4:84–91 (2002).

    Article  PubMed  Google Scholar 

  40. S. Boeckle, K. von Gersdorff, S. van der Piepen, C. Culmsee, E. Wagner, and M. Ogris. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J. Gene Med. 6:1102–1111 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. M. Thomas, and A. M. Klibanov. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA. 100:9138–9143 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. C. H. Ahn, S. Y. Chae, Y. H. Bae, and S. W. Kim. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J. Control. Release 80:273–282 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. M. L. Forrest, J. T. Koerber, and D. W. Pack. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem. 14:934–940 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. M. R. Park, K. O. Han, I. K. Han, M. H. Cho, J. W. Nah, Y. J. Choi, and C. S. Cho. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J. Control. Release 105:367–380 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. M. Thomas, and A. M. Klibanov. Non-viral gene therapy: polycation-mediated DNA delivery. Appl. Microbiol. Biotechnol. 62:27–34 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. Y.-B. Lim, Y. H. Choi, and J. S. Park. A self-destroying polycationic polymer: biodegradable poly(4-hydroxy-L-proline ester). J. Am. Chem. Soc. 121:5633–5639. (1999).

    Article  CAS  Google Scholar 

  47. D. Yang, Y. Li, X. Yuan, L. Matoney, and B. Yan. Regulation of rat carboxylesterase expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): a dose-dependent decrease in mRNA levels but a biphasic change in protein levels and activity. Toxicol. Sci. 64:20–27 (2001).

    PubMed  CAS  Google Scholar 

  48. B. Brissault, C. Leborgne, C. Guis, O. Danos, H. Cheradame, and A. Kichler. Linear topology confers in vivo gene transfer activity to polyethylenimines. Bioconjug. Chem. 17:759–765 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. Q. Ge, L. Filip, A. Bai, T. Nguyen, H. N. Eisen, and J. Chen. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. U S A. 101:8676–8681 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. J. Rosenecker, S. Huth, and C. Rudolph. Gene therapy for cystic fibrosis lung disease: current status and future perspectives. Curr. Opin. Mol. Ther. 8:439–445 (2006).

    PubMed  CAS  Google Scholar 

  51. E. M. Toloza, M. A. Morse, and H. K. Lyerly. Gene therapy for lung cancer. J. Cell. Biochem. 99:1–22 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by NIH grants GM26698 (to AMK) and AI56267 (to JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Klibanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, M., Lu, J.J., Zhang, C. et al. Identification of Novel Superior Polycationic Vectors for Gene Delivery by High-throughput Synthesis and Screening of a Combinatorial Library. Pharm Res 24, 1564–1571 (2007). https://doi.org/10.1007/s11095-007-9279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9279-3

Key words

Navigation