Skip to main content
Log in

Solubility-Excipient Classification Gradient Maps

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Abstract

This study assessed the effect of excipients (sodium taurocholate, 2-hydroxypropyl-β-cyclodextrin, potassium chloride, propylene glycol, 1-methyl-2-pyrrolidone, and polyethylene glycol 400) on the apparent intrinsic solubility properties of eight sparingly soluble drugs (four bases, two neutrals, and two acids): astemizole, butacaine, clotrimazole, dipyridamole, griseofulvin, progesterone, glibenclamide, and mefenemic acid. Over 1,200 UV-based solubility measurements (pH 3–10) were made with a high-throughput instrument. New equations, based on the “shift-in-pK a” method, were derived to interpret the complicated solubility–pH dependence observed, and poorly predicted by the Henderson–Hasselbalch equation. An intrinsic solubility-excipient classification gradient map visualization tool was developed to rank order the compounds and the excipients. In excipient-free solutions, all of the ionizable compounds formed either uncharged or mixed-charge aggregates. Mefenamic acid formed anionic dimers and trimers. Glibenclamide displayed a tendency to form monoanionic dimers. Dipyridamole and butacaine tended to form uncharged aggregates. With strong excipients, the tendency to form aggregates diminished, except in the case of glibenclamide. We conclude that a low-cost, compound-sparing, and reasonably accurate high-throughput assay which can be used in early screening to prioritize candidate molecules by their eventual developability via the excipient route is possible with the aid of the “self-organized” intrinsic solubility-excipient classification gradient maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. van de Waterbeemd, D. A. Smith, K. Beaumont, and D. K. Walker. Property-based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem. 44:1313–1333 (2001).

    Article  Google Scholar 

  2. H. van de Waterbeemd, D. A. Smith, and B. C. Jones. Lipophilicity in PK design: methyl, ethyl, futile. J. Comp.-Aided Molec. Des. 15:273–286 (2001).

    Article  Google Scholar 

  3. Avdeef, A. Absorption and Drug Development. Wiley, New York, 2003, pp. 116–246.

    Book  Google Scholar 

  4. C. A. Lipinski. Drug-like properties and the causes of poor solubility and poor permeability. J. Phamacol. Tox. Methods 44:235–249 (2000).

    Article  CAS  Google Scholar 

  5. C. Lipinski. Poor aqueous solubility—an industry wide problem in drug discovery. Amer. Pharm. Rev. 5:82–85 (2002).

    Google Scholar 

  6. Pharma Algorithms, Toronto, Canada. Algorithm Builder V1.8 and ADME Boxes V2.5 computer programs (http://www.ap-algorithms.com; date accessed 7 September 2006).

  7. Advanced Chemistry Development Inc., Toronto, Canada. ACD/Solubility DB computer program (http://www.acdlabs.com; date accessed 16 January 2006).

  8. W. M. Maylan and P. H. Howard. Estimating log P with atom/fragments and water solubility with log P. Perspect. Drug Discov. Des. 19:67–84 (2000).

    Article  Google Scholar 

  9. A. Glomme, J. März, and J. B. Dressman. Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J. Pharm. Sci. 94:1–16 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. B. Faller and F. Wohnsland. Physicochemical parameters as tools in drug discovery and lead optimization. In:B, Testa, H. van de Waterbeemd, G. Folkers, and R. Guy (eds.), Pharmacokinetic Optimization in Drug Research, Verlag Helvetica Chimica Acta, Zürich and Wiley—VCH, Weinheim, 2001, pp. 257–274.

  11. C. A.S. Bergström, K. Luthman, and P. Artursson. Accuracy of calculated pH-dependent aqueous drug solubility. Eur. J. Pharm. Sci. 22:387–398 (2004).

    Article  PubMed  Google Scholar 

  12. V. Bakatselou, R. C. Oppenheim, and J. B. Dressman. Solubilization and wetting effects of bile salts in the dissolution of steroids. Pharm. Res. 8:1461–1469 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. T. Higuchi, F.-M. Shih, T. Kimura, and J. H. Rytting. Solubility determination of barely aqueous-soluble organic solids. J. Pharm. Sci. 68:1267–1272 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. W. H. Streng, D. H.-S. Yu, and C. Zhu. Determination of solution aggregation using solubility, conductivity, calorimetry, and pH measurement. Int. J. Pharm. 135:43–52 (1996).

    Article  CAS  Google Scholar 

  15. C. Zhu and W. H. Streng. Investigation of drug self-association in aqueous solution using calorimetry, conductivity, and osmometry. Int. J. Pharm. 130:159–168 (1996).

    Article  CAS  Google Scholar 

  16. S. W. Smith and B. D. Anderson. Salt and mesophase formation in aqueous suspensions of lauric acid. Pharm. Res. 10:1533–1543 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. A. Fini, G. Fazio, and G. Feroci. Solubility and solubilization properties of non-steroidal antiinflammatory drugs. Int. J. Pharm. 126:95–102 (1995).

    Article  CAS  Google Scholar 

  18. Y. Bouligand, F. Boury, J.-M. Devoisselle, R. Fortune, J.-C. Gautier, D. Girard, H. Maillol, and J.-E. Proust. Ligand crystals and colloids in water–amiodarone systems. Langmuir 14:542–546 (1998).

    Article  CAS  Google Scholar 

  19. T. J. Roseman and S. H. Yalkowsky. Physicochemical properties of prostaglandin F2∝ (tromethamine salt): solubility behavior, surface properties, and ionization constants. J. Pharm. Sci. 62:1680–1685 (1973).

    Article  PubMed  CAS  Google Scholar 

  20. J. Jinno, D.-M. Oh, J. R. Crison, and G. L. Amidon. Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant. J. Pharm. Sci. 89:268–274 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. A. Avdeef, D. Voloboy, and A. Foreman. Dissolution–Solubility: pH, Buffer, Salt, Dual-Solid, and Aggregation Effects. In B. Testa, and H. van de Waterbeemd (eds.), Comprehensive Medicinal Chemistry II, vol. 5 ADME-TOX Approaches. Elsevier, Oxford, UK, 2006, in press.

  22. A. Avdeef. High-throughput measurements of solubility profiles. In B. Testa, H. van de Waterbeemd, G. Folkers, and R. Guy (eds.), Pharmacokinetic Optimization in Drug Research, Verlag Helvetica Chimica Acta: Zürich and Wiley, Weinheim, 2001, pp. 305–326.

  23. A. Avdeef. Physicochemical Profiling (Permeability, Solubility, Charge State). Curr. Topics Med. Chem. 1:277–351 (2001).

    Article  CAS  Google Scholar 

  24. A. Avdeef and B. Testa. Physicochemical profiling in drug research: a brief state-of-the-art of experimental techniques. Cell. Molec. Life Sci. 59:1681–1689 (2003).

    Article  Google Scholar 

  25. K. Okimoto, R. A. Rajewski, K. Uekama, J. A. Jona, and V. J. Stella. The interaction of charged and uncharged drugs with neutral (HP-β-CD) and anionically charged (SBE7-β-CD) β-cyclodextrins. Pharm. Res. 13:256–264 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. X. Wen, Z. Liu, T. Zhu, M. Zhu, K. Jiang, and Q. Huang. Evidence for the 2:1 molecular recognition and inclusion behavior between β- and γ-cyclodextrins and cinchonine. Bioorg. Chem. 32:223–233 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. H. Liu, C. Sabus, G. T. Carter, C. Du, A. Avdeef, and M. Tischler. In vitro permeability of poorly aqueous soluble compounds using different solubilizers in the PAMPA assay with liquid chromatography/mass spectrometry detection. Pharm. Res. 20:1820–1826 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. H. Chen, Z. Zhang, C. McNulty, O. Cameron, H. J. Yoon, J. W. Lee, S. C. Kim, M. H. Seo, H. S. Oh, A. V. Lemmo, S. J. Ellis, and K. Heimlich. A high-throughput combinatorial approach for the discovery of a Cremophor EL-free paclitaxel formulation. Pharm. Res. 20:1302–1308 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. S. Bendels, O. Tsinman, B. Wagner, D. Lipp, I. Parrilla, M. Kansy, and A. Avdeef. PAMPA-Excipient Classification Gradient Maps. Pharm. Res. 23:2525–2535 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. Beckman Coulter, Inc., Fullerton, CA, USA. Biomek® FX Automated Assay Optimization (http://www.beckman.com; date accessed 16 January 2006).

  31. P. Taylor. Optimising assays for automated platforms. Modern Drug Discov. December issue, 37–39 (2002).

  32. H. Tye. Application of statistical ‘design of experiments’ methods in drug discovery. Drug Discov. Today 9:485–491 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. A. S. Uch, U. Hesse, and J. B. Dressman. Use of 1-methyl-pyrrolidone as a solubilizing agent for determining the uptake of poorly soluble drugs. Pharm. Res. 16:968–971 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. E. Rytting, K. A. Lentz, X.-Q. Chen, F. Qian, and S. Venkatesh. Aqueous and cosolvent solubility data for drug-like organic compounds. The AAPS J. 7:E78–E105 (2005).(http://www.aapsj.org; date accessed 7 December 2005).

    Article  CAS  Google Scholar 

  35. J. B. Dressman. Dissolution testing of immediate-release products and its application to forecasting in vivo performance. In J. B. Dressman, and H. Lennernäs (eds.), Oral Drug Absorption, Dekker, New York, 2000, pp. 155–181.

    Google Scholar 

  36. A. Avdeef and J. J. Bucher. Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-controlled automatic titrator. Anal. Chem. 50:2137–2142 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Avdeef.

Additional information

Contribution number 22 in the PAMPA—a Drug Absorption in vitro Model series from pION. (29) is part 21 in the series. Double-Sink PAMPA™, PAMPA-Mapping™, and ISE-Mapping™ are trademarks of pION INC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeef, A., Bendels, S., Tsinman, O. et al. Solubility-Excipient Classification Gradient Maps. Pharm Res 24, 530–545 (2007). https://doi.org/10.1007/s11095-006-9169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9169-0

Key words

Navigation