Skip to main content
Log in

PAMPA–Excipient Classification Gradient Map

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The effect of excipients on the artificial membrane permeability (Double-Sink PAMPA) properties of eight sparingly soluble drugs was studied. Quantities of excipient were selected to match the concentrations expected in the gastrointestinal fluid under clinically relevant conditions. Over 1,200 measurements were performed. To correct for the effects of the aqueous boundary layer and determine the intrinsic permeability, precisely measured ionization constants were used. The intrinsic permeability of weak acids was enhanced (up to 100 fold) but that of weak bases depressed (up to 270 fold) by the excipients: mefenamic acid > glybenclamide > progesterone > griseofulvin > clotrimazole > astemizole > dipyridamole > butacaine. Excipient enhancement ranked: 3 mM NaTC > 0.24% PEG400 > 0.2 M KCl > 0.24% NMP > 5% PEG400 > 0.24% PG > 1% PEG400 > 0.1M KCl > 1% PG > 1% NMP > 5% PG > 0.24% HP-β-CD > 1% HP-β-CD > 15 mM NaTC. The study clearly indicates that the method is suitable for use in preclinical development to assess the effect of excipients on the permeability of sparingly soluble drug candidates. The method is quick, cost-effective, and reasonably accurate. The self-rank-ordered PAMPA-Mapping may be a helpful visualization tool for delivery screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. van de Waterbeemd, D. A. Smith, K. Beaumont, and D. K. Walker. Property-based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem.44:1313–1333 (2001).

    Article  Google Scholar 

  2. H. van de Waterbeemd, D. A. Smith, and B. C. Jones. Lipophilicity in PK design: methyl, ethyl, futile. J. Comp.-Aided Molec. Des.15:273–286 (2001).

    Article  Google Scholar 

  3. A. Avdeef. Absorption and Drug Development. Wiley, New York, 2003 (pp. 116–246).

    Book  Google Scholar 

  4. C. A. Lipinski. Drug-like properties and the causes of poor solubility and poor permeability. J. Phamacol. Tox. Methods44:235–249 (2000).

    Article  CAS  Google Scholar 

  5. C. Lipinski. Poor aqueous solubility—an industry wide problem in drug discovery. Amer. Pharm. Rev.5:82–85 (2002).

    Google Scholar 

  6. J. I. Wells. Pharmaceutical Preformulation: The Physicochemical Properties of Drug Substances. Ellis Horwood, Chichester, 1988.

    Google Scholar 

  7. A. H. Kibbe. (ed.) Handbook of Pharmaceutical Excipients, 5th ed. American Pharmaceutical Association, Washington, District of Columbia, 2005.

  8. N. F. H. Ho, T. J. Raub, P. S. Burton, C. L. Barsuhn, A. Adson, K. L. Audus, and R. Borchardt. Quantitative approaches to delineate passive transport mechanisms in cell culture monolayers. In G. L. Amidon, P. I. Lee, E. M. Topp, (eds.), Transport Processes in Pharmaceutical Systems. Marcel Dekker, New York, New York, 2000, pp. 219–316.

    Google Scholar 

  9. A. Avdeef, P. Artursson, S. Neuhoff, L. Lazorova, J. Gråsjö, and S. Tavelin. Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA \( pK^{{flux}}_{a} \) method. Eur. J. Pharm. Sci.24:333–349 (2005).

    Article  CAS  Google Scholar 

  10. H. Liu, C. Sabus, G. T. Carter, C. Du, A. Avdeef, and M. Tischler. In vitro permeability of poorly aqueous soluble compounds using different solubilizers in the PAMPA assay with liquid chromatography/mass spectrometry detection. Pharm. Res.20:1820–1826 (2003).

    Article  CAS  Google Scholar 

  11. M. Kansy, F. Senner, and K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeability assay in the description of passive absorption processes. J. Med. Chem. 41:1007–1010 (1998).

    Article  CAS  Google Scholar 

  12. M. Bermejo, A. Avdeef, A. Ruiz, R. Nalda, J. A. Ruell, O. Tsinman, I. González, C. Fernández, G. Sánchez, T. M. Garrigues, and V. Merino. PAMPA—a drug absorption in vitro model. 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. Eur. J. Pharm. Sci.21:429–441 (2004).

    Article  CAS  Google Scholar 

  13. M. Kansy, A. Avdeef, and H. Fischer. Advances in screening for membrane permeability: high-resolution PAMPA for medicinal chemists. Drug Disc. Today: Technologies1:349–355 (2004).

    Article  CAS  Google Scholar 

  14. A. Avdeef. The rise of PAMPA. Expert Opin. Drug Metab. Toxicol.1:325–342 (2005).

    Article  CAS  Google Scholar 

  15. J. B. Dressman. Dissolution testing of immediate-release products and its application to forecasting in vivo performance. In J. B. Dressman, and H. Lennernäs, (eds.), Oral Drug Absorption, Marcel Dekker, Inc., New York, 2000, pp. 155–181.

    Chapter  Google Scholar 

  16. A. Avdeef. pH–metric solubility. 1. Solubility–pH profiles from Bjerrum plots. Gibbs buffer and pKa in the solid state. Pharm. Pharmacol. Commun. 4:165–178 (1998).

    CAS  Google Scholar 

  17. A. Avdeef, C. M. Berger, and C. Brownell. pH–metric solubility. 2. Correlation between the acid–base titration and the saturation shake-flask solubility–pH methods. Pharm. Res.17:85–89 (2000).

    Article  CAS  Google Scholar 

  18. A. Avdeef and C. M. Berger. pH–metric solubility. 3. Dissolution titration template method for solubility determination. Eur. J. Pharm. Sci.14:281–291 (2001).

    Article  CAS  Google Scholar 

  19. A. Avdeef and J. J. Bucher. Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-controlled automatic titrator. Anal. Chem.50:2137–2142 (1978).

    Article  CAS  Google Scholar 

  20. J. A. Ruell, K. L. Tsinman, and A. Avdeef. PAMPA—a drug absorption in vitro model. 5. Unstirred water layer in iso-pH mapping assays and \( pK^{{flux}}_{a} \)—optimized design (pOD-PAMPA). Eur. J. Pharm. Sci.20:393–402 (2003).

    Article  CAS  Google Scholar 

  21. A. Avdeef, P. Nielsen, and O. Tsinman. PAMPA—a drug absorption in vitro model. 11. Matching the in vivo aqueous boundary layer by individual-well stirring in microtitre plates. Eur J. Pharm. Chem.22:365–374 (2004).

    CAS  Google Scholar 

  22. A. Avdeef. High-throughput measurements of permeability profiles. In H. van de Waterbeemd, H. Lennernäs, and P. Artursson (eds.), Drug Bioavailability, Estimation of Solubility, Permeability, Absorption and Bioavailability, Wiley-VCH, Weinheim, 2002, pp. 46–71.

    Google Scholar 

  23. P. E. Nielsen and A. Avdeef. PAMPA—a drug absorption in vitro model. 8. Apparent filter porosity and the aqueous boundary layer. Eur. J. Pharm. Sci.22:33–41 (2004).

    Article  CAS  Google Scholar 

  24. A. Avdeef. Physicochemical profiling (solubility, permeability and charge state). Curr. Topics Med. Chem.1:277–351 (2001).

    Article  CAS  Google Scholar 

  25. A. Avdeef, J. E. A. Comer, and S. J. Thomson. pH–metric logP. 3. Glass electrode calibration in methanol–water, applied to pKa determination of water-insoluble substances. Anal. Chem.65:42–49 (1993).

    Article  CAS  Google Scholar 

  26. A. Avdeef, D. L. Kearney, J. A. Brown, and A. R. Chemotti Jr. Bjerrum plots for the determination of systematic concentration errors in ttitration data. Anal. Chem.54:2322–2326 (1982).

    Article  CAS  Google Scholar 

  27. W. H. Streng, D. H.-S. Yu, and C. Zhu. Determination of solution aggregation using solubility, conductivity, calorimetry, and pH measurements. Int. J. Pharm.135:43–52 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Torsten Hoffmann (Roche) for encouragement and support of this project. We are especially grateful to the anonymous reviewer for his astute insights into transport equations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Avdeef.

Additional information

Contribution number 21 in the PAMPA—a Drug Absorption in vitro Model series from pION. (14) is part 17 in the series. Double-Sink™, Gut-Box™, and PAMPA-Mapping™ are trademarks of pION INC.

Appendix

Appendix

The approximation in Eq. 4 is accurate when P o > 10 P ABL, but with mildly lipophilic molecules (cf., Fig. 3d—dipyridamole), the exact form is required to calculate \( {\text{p}}K^{{{\text{flux}}}}_{{\text{a}}} \). The solid-line curve in Fig. 3d only approximately indicates the \( {\text{p}}K^{{{\text{flux}}}}_{{\text{a}}} \) at the pH corresponding to the half-integral slope (that’s why no \( {\text{p}}K^{{{\text{flux}}}}_{{\text{a}}} \) value is noted in Fig. 3d). The precise (more complicated) form of Eq. 4, which can describe the case of dipyridamole is given by

$$ \log P_{{\text{e}}} = \log P^{{\max }}_{{\text{e}}} - \log {\left( {10^{{ \pm {\left( {{\text{pH}}{\text{ - }}{\text{p}}K^{{{\text{flux,}}{\text{app}}}}_{{\text{a}}} } \right)}}} + 1} \right)} $$
(6)

where observed \( {\text{p}}K^{{{\text{flux, app}}}}_{{\text{a}}} \) is an apparent value, not precisely equal to the true \( {\text{p}}K^{{{\text{flux}}}}_{{\text{a}}} \). The difference between the two values becomes greater, the smaller the difference between the intrinsic permeability and the ABL permeability. It is tedious, but otherwise straight forward, to derived the explicit logarithmic form of Eq. 3. In the exact solution,

$$ {\text{p}}K^{{{\text{flux, app}}}}_{{\text{a}}} = {\text{p}}K^{{{\text{flux}}}}_{{\text{a}}} \mp \log {\left[ {{{\left( {P_{{\text{o}}} {\text{ }} - {\text{ }}P_{{{\text{ABL}}}} } \right)}} \mathord{\left/ {\vphantom {{{\left( {P_{{\text{o}}} {\text{ }} - {\text{ }}P_{{{\text{ABL}}}} } \right)}} {{\left( {P_{{\text{o}}} + P_{{{\text{ABL}}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {P_{{\text{o}}} + P_{{{\text{ABL}}}} } \right)}}} \right]} $$
(7)

where the ‘−’ refers to acids and the ‘+’ sign refers to bases. Figure 6 shows the relationships between the ionization constants as a function of the difference between log P o and log P ABL. Above one log unit of difference (highly lipophilic compounds), \( {\text{p}}K^{{{\text{flux, app}}}}_{{\text{a}}} \approx {\text{p}}K^{{{\text{flux}}}}_{{\text{a}}} \). It should be further emphasized that Eqs. 4 and 6 are only valid when Po > PABL, as we had noted previously (9,21). In practice, the approximate form (Eq. 3) has proven to be useful in visualizing the balance between membrane and water factors controlling the transport of molecules across biologically relevant membrane barriers.

Fig. 6
figure 6

The exact Eq. 4 relationship (applied to a weak acid) between the true pK a (dashed curve), the flux value, \( {\text{p}}K_{{\text{a}}}^{{{\text{flux}}}} \) (solid line curve), and the apparent flux value, \( {\text{p}}K_{{\text{a}}}^{{{\text{flux,app}}}} \) (dotted curve) constants as a function of the difference between the logarithmic intrinsic permeability (log P o) and the aqueous boundary layer permeability (log P ABL). The two flux values become nearly equivalent for log P o − log P ABL > 1. The thin straight line is the identity line.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendels, S., Tsinman, O., Wagner, B. et al. PAMPA–Excipient Classification Gradient Map. Pharm Res 23, 2525–2535 (2006). https://doi.org/10.1007/s11095-006-9137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9137-8

Key words

Navigation