Skip to main content
Log in

Chemical Analysis of Solid-State Irradiated Human Insulin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To study the chemical modifications induced upon irradiation of solid human insulin at radiosterilization doses and investigate the influence of the absorbed dose on radiolysis.

Materials and Methods

Volatile radiolytic products were monitored by gas chromatography coupled with mass spectrometry (GC-MS) and non-volatile products by two different high performance liquid chromatography (HPLC) methods: the formation of higher molecular weight proteins was assessed by size exclusion liquid chromatography whereas assays for related compounds and chemical potency tests were carried out using reverse-phase HPLC-UV. Conformational changes were investigated by measurements of circular dichroism.

Results

After gamma irradiation at 10 kGy, the recovery of insulin was 96.8%; higher molecular weight proteins accounted for 0.35% (relative peak area) and other related compounds (including A21 desamido insulin) represented 1.29%. No major structural changes and no volatile radiolytic compounds were detected.

Conclusion

Human insulin samples irradiated in the solid-state at 10 kGy (gamma rays) and 14 kGy (electron-beam) meet the European Pharmacopoeia requirements and can be considered as quite stable towards radiation from a chemical analysis viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. S. Kempner. Effects of high-energy electrons and gamma rays directly on protein molecules. J. Pharm. Sci. 90:1637–1646 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. B. D. Reid, and B. P. Fairand. Sterilization of drugs and devices technologies for the 21st century. In F. M. Nordhauser, and W. P. Olson (eds.), Sterilization of Drugs and Devices Technologies for the 21st Century, Interpharm, Buffalo Grove, 1998, pp 311–392.

    Google Scholar 

  3. The United States Pharmacopoeia USP. Sterilization and sterility assurance of compendial articles. 24th ed., Rockville, 2000, pp. 2143–2147.

  4. European Pharmacopoeia. Textes généraux sur la stérilité. 4th ed., Council of Europe, Strasbourg, 2000, pp. 439–444.

    Google Scholar 

  5. ISO 11137. Sterilization of health care products—requirements for validation and routine control–radiation sterilization. International Standard for Organization, Switzerland, 1995.

  6. EN552. Sterilization of medical devices: validation and routine control of sterilization by irradiation. European Standardisation Organization, Brussels, 1994.

  7. The European Agency for the Evaluation of Medicinal Products (EMEA). Decision trees for the selection of sterilization methods (CPMP/QWP/054/98 corr), EMEA, London, 2000.

  8. N. Barbarin and B. Tilquin. Study of nonvolatile degradation compounds produced by radiosterilization of cefotaxime. Radiat. Phys. Chem. 60:359–367 (2001).

    Article  CAS  Google Scholar 

  9. The European Agency for the Evaluation of Medicinal Products (EMEA). ICH Topic Q3A Note for Guidance on Impurities testing: impurities in new drug substances. (CPMP/ICH/2737/99), EMEA, London, 2002.

  10. H. Terryn, V. Deridder, C. Sicard-Roselli, B. Tilquin, and C. Houée-Levin. Radiolysis of proteins in the solid state. An approach by EPR and product analysis. J. Synchrotron Radiat. 12:292–298 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. European Pharmacopoeia. Techniques de séparation chromatographique. 5th ed., Council of Europe, Strasbourg, 2005, pp. 72–77.

    Google Scholar 

  12. D. A. Malencik, J. F. Sprouse, C. A. Swanson, and S. R. Anderson. Dityrosine: preparation, isolation, and analysis. Anal. Biochem. 242:202–213 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. S. Linde and B. S. Welinder. Non-ideal behaviour of silica-based stationary phases in trifluoroacetic acid-acetonitrile-based reversed-phase high-performance liquid chromatographic separations of insulins and proinsulins. J. Chromatogr. A. 536:43–55 (1991).

    Article  CAS  Google Scholar 

  14. A. W. Purcell, M. I. Aguilar, and M. T. W. Hearn. Conformational effects in reversed-phase high-performance liquid chromatography of polypeptides. I. Resolution of insulin variants. J. Chromatogr. A. 711:61–70 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. B. S. Welinder and H. S. Sørensen. Alternative mobile phases for the reversed-phase-high-performance liquid chromatography of peptides and proteins. J. Chromatogr. A. 537:181–199 (1991).

    Article  CAS  Google Scholar 

  16. J. Brange, S. Havelund, and P. Hougaard. Chemical stability of insulin. 2. Formation of higher molecular weight transformation products during storage of pharmaceutical preparations. Pharm. Res. 9:727–734 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. N. Barbarin, B. Rollmann, and B. Tilquin. Role of residual solvents in the formation of volatile compounds after radiosterilisation of cefotaxime. Int. J. Pharm. 178:203–212 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. S. M. Darby, M. L. Miller, R. O. Allen, and M. Lebeau. A mass spectrometric method for quantification of intact insulin in blood samples. J. Anal. Toxicol. 25:8–14 (2001).

    PubMed  CAS  Google Scholar 

  19. European Pharmacopoeia. Insuline humaine. 5th ed., Council of Europe, Strasbourg, 2005, pp. 1941–1943.

    Google Scholar 

  20. M. Falconi, M. Bozzi, M. Paci, A. Raudino, R. Purrello, A. Cambria, M. Sette, and M. T. Cambria. Spectroscopic and molecular dynamics simulation studies of the interactions of insulin with glucose. Int. J. Biol. Macromol. 29:161–168 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. Y. Pocker and S. B. Biswas. Conformational dynamics of insulin in solution. Circular dichroic studies. Biochemistry. 19:5043–5049 (1980).

    Article  PubMed  CAS  Google Scholar 

  22. L. Zixian. Ultraviolet circular dichroism of insulin and its analogs. Scientia Sinica 24:1566–1574 (1980).

    Google Scholar 

  23. N. Barbarin, A. S. Crucq, and B. Tilquin. Study of volatile compounds from the radiosterilization of solid cephalosporine. Radiat. Phys. Chem. 48:787–794 (1996).

    Article  CAS  Google Scholar 

  24. J. Brange, O. Hallund, and E. Sørensen. Chemical stability of insulin. 5. Isolation, characterization and identification of insulin transformation products. Acta Pharmaceutica Nordica 4:223–232 (1992).

    PubMed  CAS  Google Scholar 

  25. S. Terabe, R. Konaka, and K. Inouye. Separation of some polypeptide hormones by high-performance liquid chromatography. J. Chromatogr. A. 172:163–177 (1979).

    Article  CAS  Google Scholar 

  26. A. Hvass, M. Hach, and M. U. Jars. Complementary analytical HPLC methods for insulin-related degradation products. Am. Biotechnol. Lab. 21:8–12 (2003).

    CAS  Google Scholar 

  27. P. Moslemi, A. R. Najafabadi, and H. Tajerzadeh. A rapid and sensitive method for simultaneous determination of insulin and A21-desamido insulin by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 33:45–51 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. B. V. Fisher, P. B. Porter. Stability of bovine insulin. J. Pharm. 33:203–206 (1981).

    CAS  Google Scholar 

  29. M. J. Pikal, and D. R. Rigsbee. The stability of insulin in crystalline and amorphous solids: observation of greater stability for the amorphous form. Pharm. Res. 14:1379–1387 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. J. D. Hirst, S. Bhattacharjee, and A. V. Onufriev. Theoretical studies of time-resolved spectroscopy of protein folding. Faraday Discuss. 122:253–267 (2002).

    Article  CAS  Google Scholar 

  31. N. Sreerama, C. M. Manning, M. E. Powers, J. Zhang, D. P. Goldenberg, and R. W. Woody. Tyrosine, phenylalanine and disulfide contributions to the circular dichroism of proteins: circular dichroism spectra of wild-type and mutant bovine pancreatic trypsin inhibitor. Biochemistry. 38:10814–10822 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. V. N. Uversky, L. N. Garriques, I. S. Millett, S. Frokjaer, J. Brange, S. Domiach, and A. L. Fink. Prediction of association state of insulin using spectral parameters. J. Pharm. Sci. 92:847–858 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. A. Wallmer, J. Fleishauer, W. Strassburger, and H. Thiele. Side-chain mobility of the calculation of tyrosyl circular dichroism of proteins. Implications of a test with insulin and des-B1-phenylalanine insulin. Biophys. J. 20:233–243 (1977).

    Article  Google Scholar 

  34. J. W. Morris, D. A. Mercola, and E. R. Arquilla. An analysis of the near ultraviolet circular dichroism of insulin. Biochim. Biophys. Acta 160:145–150 (1968).

    PubMed  CAS  Google Scholar 

  35. D. A. Mercola, J. W. Morris, E. R. Arquilla, and W. W. Bromes. The ultraviolet circular dichroism of bovine insulin and desoctapeptide insulin. Biochim. Biophys. Acta 133:224–232 (1967).

    PubMed  CAS  Google Scholar 

  36. A. Chapelier, M. Desmadril, and C. Houée-Levin. Gamma radiation effects on α-lactalbumin: structural modifications. Can. J. Physiol. Pharm. 79:154–157 (2001).

    Article  CAS  Google Scholar 

  37. J. W. T. Spinks, and R. J. Woods. An Introduction to Radiation Chemistry, 3rd ed., Wiley, New-York, 1990.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Jean Cara for having carried out the gamma irradiations, Mr. Descamps and Mrs. Thys (Mölnlycke Beta Plant, Waremme, Belgium) for the use of their LINAC. We also thank Professor P. Colson (ULg, Belgium) for circular dichroism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Terryn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terryn, H., Vanhelleputte, JP., Maquille, A. et al. Chemical Analysis of Solid-State Irradiated Human Insulin. Pharm Res 23, 2141–2148 (2006). https://doi.org/10.1007/s11095-006-9053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9053-y

Key words

Navigation