Skip to main content
Log in

Logistic Regression Model: The Effect of Endogenous Magnesium Level on the Concentration of Magnesium Drugs in a Bioequivalence Study

  • MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The comparative bioavailability and bioequivalence of drugs containing magnesium citrate were studied. Logistic regression models were constructed to assess the effect of the background magnesium content on the magnesium concentration after use of the drugs. The following pharmacokinetic parameters were evaluated: the maximum concentration of magnesium in whole blood of volunteers (Cmax), the time to reach the maximum concentration of magnesium in whole blood of volunteers (tmax), and the area under the plasma-concentration(time pharmacokinetic curve (AUC(0-t)). Arecalculation taking into account the endogenous magnesium level was used for a correct calculation of the pharmacokinetic parameters. The studied drugs were found to be bioequivalent with calculated 90% confidence intervals falling within the acceptable range of 80 – 125%. Logistic regression models were constructed where the concentrations after taking the studied drugs were chosen as the dependent variables; the background magnesium contents, the influential factor. The correlation between the background value and Cmax in volunteers that took the studied and reference drugs was noticeable and positive (on the Chaddock scale) at 0.650 and 0.667, respectively, and statistically significant (p < 0.006 and p < 0.005). The resulting model took into account 42.3% and 44.4%, respectively, of the factors determining changes in the Cmax level. It was concluded that construction of a logistic regression model of the relationship between the background magnesium concentration and the concentration after taking the studied drugs could be considered one possible predictor that can be used to assess the bioavailability of drugs containing magnesium salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. https://www.efsa.europa.eu/en

  2. https://www.fda.gov

  3. Decision No. 78 of the Council of the Eurasian Economic Commission of Nov. 3, 2016, “On rules for registering and reviewing drugs for medical use.”

  4. The jamovi project (2021). jamovi. (Version 1.6) [Computer Software]. Retrieved from https://www.jamovi.org.

References

  1. Y. Jiao, W. Li, L. Wang, et al., Nutrients, 14(10), 2013 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G. E. Gilca-Blanariu, A. Trifan, M. Ciocoiu, et al., Nutrients, 14(9), 1914 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. W. Li, Y. Jiao, L. Wang, et al., Nutrients, 14(9), 1799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. F. Escobedo-Monge, E. Barrado, J. Parodi-Roman, et al., Nutrients, 14(9), 1793 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Pelczynska, M. Moszak, and P. Bogdanski, Nutrients, 14(9), 1714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. F. Guerrero-Romero, M. Mercado, M. Rodriguez-Moran, et al., Nutrients, 14(9), 1686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Schiopu, G. Stefanescu, S. Diaconescu, et al., Nutrients, 14(8), 1567 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. S. Ebrahimi, S. M. Ghoreishy, A. Hemmati, et al., Sci. Rep., 11(1), 24388 (2021).

    Article  Google Scholar 

  9. N. Dana, R. Karimi, M. Mansourian, et al., Int. J. Vitam. Nutr. Res., 91(5 – 6), 539 – 546 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. G. Nepal, M. A. Coghlan, J. K. Yadav, et al., Trop. Med. Int. Health, 26(10), 1200 – 1209 (2021).

    Article  PubMed  Google Scholar 

  11. J. Zeng, Q. Chen, C. Yu, et al., Clin. J. Pain, 37(8), 629 – 637 (2021).

    Article  PubMed  Google Scholar 

  12. T. Ramesh, P. Y. K. Lee, M. Mitta, et al., J. Cardiol., 78(5), 375 – 381 (2021).

    Article  PubMed  Google Scholar 

  13. Q. H. Shen, X.-S., L. Lai, et al., J. Clin. Anesth., 78, 110669 (2022).

  14. A. Bagheri, S. Naghshi, O. Sadeghi, et al., Adv. Nutr., 12(4), 1196 – 1210 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. N. Veronese, L. J. Dominguez, D. Pizzol, et al., Nutrients, 13(11), 4074 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. I. Groenendijk, M. van Delft, P. Versloot, et al., Bone, 154, 116233 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. M. R. Pardo, E. G. Vilar, I. San M. Martin, et al., Nutrition, 89, 111294 (2021).

  18. J. P. Schuchardt and A. Hahn, Curr. Nutr. Food Sci., 13(4), 260 – 278 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. N. N. Eremenko, E. V. Shikh, S. Y. Serebrova, et al., Drug Metab. Pers. Ther., 34(3) (2019).

  20. Bioequivalence Studies with Pharmacokinetic Endpoints for Drugs Submitted Under an ANDA, United States Food and Drug Administration, New Hampshire (2013).

  21. Investigation of Bioequivalence (CPMP / EWP / QWP / 1401 / 98 Rev. 1), European Medicines Agency, London (2013).

  22. Rules for Bioequivalence Studies of Drugs in the Eurasian Economic Union Approved by Decision No. 85 of the Council of the Eurasian Economic Commission of Nov. 3, 2016, Moscow (2016).

  23. V. V. Smirnov, Author’ Abstract of a Doctoral Dissertation in Pharmaceutical Sciences, Moscow (2020).

  24. J. P. Schuchardt and A. Hahn, Curr. Nutr. Food Sci., 13(4), 260 – 278 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Benech, A. Pruvost, A. Batel, et al., Pharm. Res., 15, 347 – 351 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. C. V. Odvina, R. P. Mason, and C. Y. C. Pak, Am. J. Ther., 13(2), 101 – 108 (2006).

    Article  PubMed  Google Scholar 

  27. L. A. Wuermser, C. Reilly, J. R. Poindexter, et al., Kidney Int., 57(2), 607 – 612 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. H. Aydin, O. Deyneli, D. Yavuz, et al., Biol. Trace Elem. Res., 133(2), 136 – 143 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. C. Roffe, S. Sills, P. Crome, et al, Med. Sci. Monit., 8(5), CR326 – 30 (2002).

  30. O. A. Gromova, I. Yu. Torshin, and T. R. Grishina, Trudnyi Patsient, 8(8), 35 – 42 (2010).

    Google Scholar 

  31. C. E. Ferroli and P. R. Trumbo, Am. J. Clin. Nutr., 60(1), 68 – 71 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. T. Greupner, I. Schneider, S. Gellert, et al., J. Diet. Suppl., 17(4), 454 – 466 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. T. Werner, M. Kolisek, J. Vormann, et al, Magnesium Res., 32(3), 63 – 71 (2019).

    CAS  Google Scholar 

  34. J. Zhan, T. C. Wallace, S. J. Butts, et al., Nutrients, 12(5), 1245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. K. Dolberg, L. P. Nielsen, and R. Dahl, Basic Clin. Pharmacol. Toxicol., 120(3), 264 – 269 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. E. Brilli, S. Khadge, A. Fabiano, et al., Eur. Rev. Med. Pharmacol. Sci., 22(6), 1843 – 1851 (2018).

    CAS  PubMed  Google Scholar 

  37. M. R. Rooney, K. D. Rudser, A. Alonso, et al., Nutrients, 12(1), 263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. R. Rylander, J. Pharm. Nutr. Sci., 4, 57 – 59 (2014).

    Article  Google Scholar 

  39. L. Blancquaert, C. Vervaet, and W. Derave, Nutrients, 11(7), 1663 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Beheshti and A. Shayanfar, Eur. J. Drug Metab. Pharmacokinet., 45(6), 771 – 783 (2020).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Eremenko.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 57, No. 5, pp. 3 – 8, May, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremenko, N.N., Shikh, E.V. & Ramenskaya, G.V. Logistic Regression Model: The Effect of Endogenous Magnesium Level on the Concentration of Magnesium Drugs in a Bioequivalence Study. Pharm Chem J 57, 621–626 (2023). https://doi.org/10.1007/s11094-023-02928-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02928-8

Keywords

Navigation