Skip to main content
Log in

Plant Cell Suspension Culture: Modern Approaches and Problems in Drug Production (Review)

  • DRUG SYNTHESIS METHODS AND MANUFACTURING TECHNOLOGY
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The review is focused on the current status of plant cell cultivation, prospects for the development of approaches in this field, and the formulation of problems associated with suspension cultivation as the most advanced technology. Studies over the past decades indicated the importance and relevance of plant cell cultivation. This method enables the solution of many particularly important problems including the production of secondary metabolites with a wide range of pharmacological activity that therefore are quite valuable for the creation of medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. RF State Drug Registry; https://grls.rosminzdrav.ru/grls.aspx.

  2. N. N. Boiko, A. V. Bondarev, E. T. Zhilyakova, et al., Nauchn. Rezul’taty Biomed. Issled., 3, No. 4, 30 – 38 (2017).

    Google Scholar 

  3. J. A. Beutler, Curr. Protoc. Pharmacol., 46, 911 – 921 (2009).

    Article  Google Scholar 

  4. B. David, J. L. Wolfender, et al., Phytochem. Rev., 14(2), 299 – 315 (2015).

    Article  CAS  Google Scholar 

  5. D. G. Kingston, J. Nat. Prod., 74, 496 – 511 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. A. G. Atanasov, B. Waltenberger, et al., Biotechnol. Adv., 33(8), 1582=1614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. V. Sambukova, B. V. Ovchinnikov, V. P. Ganapol’skii, et al., Obz. Klin. Farmakol. Lek. Ter., 15(2), 56 – 63 (2017).

    Article  Google Scholar 

  8. S. A. Wilson and S. C. Roberts, Plant Biotechnol. J., 10, 249 – 268 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. K. D. Kelada, D. Tuse, et al., Foods, 10, 838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. H. Collin, Plant Growth Regul., 34, 119 – 134 (2001).

    Article  CAS  Google Scholar 

  11. E. V. Budanova, K. L. Gorlenko, and G. Yu. Kiselev, Antibiot. Khimioter., No. 5–6, 69 – 76 (2019).

  12. A. Baldi and V. K. Dixit, Bioresour. Technol., 99(11), 4609 – 4614 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. M. I. Georgiev, Biotechnol. Adv., 32, 1051 – 1052 (2014).

    Article  PubMed  Google Scholar 

  14. E. McCoy and S. E. O’Connor, “Natural products from plant cell cultures,” in: F. Petersen and R. Amstutz (eds.), Natural Compounds as Drugs, Vol. I, Progress in Drug Research, Vol. 65, Birkhauser, Basel (2008).

    Google Scholar 

  15. P. Bernhardt, E. McCoy, and S. E. O’Connor, Chem. Biol., 14, 888 – 897 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Naill and S. Roberts, Biotechnol. Bioeng., 86, 817 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. N. A. Egorova, Tavrich. Vestn. Agrar. Nauki, No. 1 (21), 19 – 30 (2021).

  18. L. Lopez-Rosales, F. Garcia-Camacho, A. Sanchez-Miron, et al., Bioresour. Technol., 197, 375 – 382 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. E. Kleshchenko, Khim. Zhizn, No. 10 (2014).

  20. A. I. Savushkin, N. A. Sidorova, and S. M. Prokopyuk, J. Biomed. Technol., No. 1, 23 – 28 (2015).

  21. N. Mustafa, W. de Winter, F. van Iren, et al., Nat. Protoc., 6(6), 715 – 742 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. S. Chattopadhyay, S. Farkya, A. K. Srivastava, et al., Biotechnol. Bioprocess Eng., No. 7, 138 (2002).

  23. A. M. Nosov, in: Proceedings of the IIIrd Scientific-Practical Conference with International Participation and Scientific School on Cell Biotechnology [in Russian], Yakutsk, Republic of Sakha (Yakutia), Russia (2018).

  24. C. A. Espinosa-Leal, C. A. Puente-Garza, and S. Garcia-Lara, Planta, 248, 1 – 18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. I. Novikova, A. A. Erst, A. A. Kuzovkova, et al., Biologically Active Substances from Plants – Study and Use. Proceedings of an International Scientific Conference [in Russian], May 29 – 31, 2013, Minsk, GNU Tsentr7 Bot. Garden BAS, Minsk (2013), pp. 168 – 169.

  26. T. Fidemann, G. A. de Araujo Pereira, T. R. Heluy, et al., Plant Cell Tissue Organ Cult., 133, 137 – 146 (2018).

    Article  CAS  Google Scholar 

  27. C. A. Puente-Garza, C. Meza-Miranda, D. Ochoa-Martinez, et al., Plant Physiol. Biochem., 115, 400 – 407 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. S. Hayta, M. Bayraktar, S. Baykan, et al., Plant Biosyst. Int. J. Deal. Asp. Plant Biol., 151, 20 – 28 (2017).

    Google Scholar 

  29. E. Karalija, S. Cavar Zeljkovic, P. Tarkowski, et al., Plant Cell Tissue Organ Cult., 131, 347 – 357 (2017).

    Article  CAS  Google Scholar 

  30. C. Espinosa-Leal, J. F. Trevino-Neavez, R. A. Garza-Padron, et al., Rev. Mex. Cienc. Farm., 46, 52 – 56 (2015).

    Google Scholar 

  31. E. García-Perez, A. J. Gutierrez-Uribe, and S. Garcia-Lara, Plant Cell Tissue Organ Cult, 108, 521 – 527 (2012).

    Article  CAS  Google Scholar 

  32. A. M. Nosov, Biotekhnologiya, No. 5, 8 – 28 (2021).

  33. A. A. Zagorskaya, Fiziol. Rast. (Moscow), No. 6, 403 – 417 (2017).

  34. C. A. Hayden, S. J. Streatfeld, B. J. Lamphear, et al., Vaccine, 30, 2937 – 2942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. P. S. Lakshmi, D. Verma, X. Yang, et al., PLoS One, 8(1), e0054708 (2013).

    Article  CAS  Google Scholar 

  36. M. Czyz, R. Dembczynski, R. Marecik, et al., BioMed Res. Int., 2014, 485689 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. M. Czyz, R. Dembczynski, R. Marecik R, et al., Biologicals, 44, 69 – 72 (2016).

  38. J. Su, L. Zhu, A. Sherman, et al., Biomaterials, 70, 84 – 93 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Yao, Y. Weng, A. Dickey, et al., Int. J. Mol. Sci., 16(12), 28549 – 28565 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E. F. George, M. A. Hall, and G. J. D. Klerk (eds.), The Components of Plant Tissue Culture Media II: Organic Additions, Osmotic and pH Effects, and Support Systems, Springer, Dordrecht (2008), pp. 115 – 173.

    Google Scholar 

  41. Y. Kitaya, Y. Ohmura, C. Kubota, et al., Plant Cell Tissue Organ Cult., 83, 251 – 257 (2005).

    Article  CAS  Google Scholar 

  42. Protalix Biopharmaceuticals; https://protalix.com/technology/procellex-platform/.

  43. K.-H. Neumann, A. Kumar, and J. Imani, Plant Cell and Tissue Culture — A Tool in Biotechnology: Basics and Application, Springer (2009).

  44. M. Hesami, R. Naderi, M. Yoosefzadeh-Najafabadi, et al., J. Appl. Environ. Biol. Sci., 7, No. 8, 37 – 44 (2017).

    Google Scholar 

  45. S. R. Decker, A. E. Harman-Ware, R. M. Happs, et al., Front. Energy Res., 6, 120 (2018).

    Article  Google Scholar 

  46. M. Hesami and A. M. P. Jones, Appl. Microbiol. Biotechnol., 104(22), 9449 – 9485 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. D. Frossyniotis, G. Moschopoulou, and C. Yialouris, J. Agric. Sci, 4(1), 114 – 120 (2008).

    Google Scholar 

  48. A. E. Zinatullina, Ekobiotekh, 3, No. 1, 38 – 50 (2020).

    Google Scholar 

  49. M. B. Greenway, I. C. Phillips, M. N. Lloyd, et al., In Vitro Cell. Dev. Biol.: Plant, 48, 403 – 410 (2012).

    Article  CAS  Google Scholar 

  50. A. M. de Carvalho, A. Mohammed, A. F. Blank, et al., Ind. Crops Prod., 116, 231 – 239 (2018).

    Article  CAS  Google Scholar 

  51. A. Shahzad, et al., “Historical Perspective and Basic Principles of Plant Tissue Culture,” in: M. Abdin, U. Kiran, and A. A. Kamaluddin (eds.), Plant Biotechnology: Principles and Applications, Springer, Singapore (2017).

    Google Scholar 

  52. H. Collin, Plant Growth Regul., 34, 119 – 134 (2001).

    Article  CAS  Google Scholar 

  53. Z. Molnar, E. Virag, and V. Ordog, Acta Biol. (Szeged), 55(1), 123 – 127 (2011).

    Google Scholar 

  54. O. A. Sel’dimirova, N. N. Kruglova, D. S. Veselov, et al., Biomika, 9(4), 298 – 303 (2017).

    Google Scholar 

  55. S. Ramani and C. Jayabaskaran, J. Mol. Signal., 3, Art. No. 9 (2008).

  56. A. K. Shanker and C. Shanker, Abiotic and Biotic Stress in Plants — Recent Advances and Future Perspectives, InTech (2016).

  57. S. A. Andi, M. Gholami, C. M. Ford, et al., Plant Cell Tissue Organ Cult., 146, 387 – 400 (2021).

    Article  CAS  Google Scholar 

  58. M. Narayani and S. Srivastava, Phytochem. Rev., 16, 1227 – 1252 (2017).

    Article  CAS  Google Scholar 

  59. J. Zhao, J. Exp. Bot., 66, 1721 – 1736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. R. Bhaskar, L. S. E. Xavier, et al., Plant Cell Tissue Organ Cult., (2021); https://doi.org/10.1007/s11240-021-02131-1.

  61. M. Hesami, R. Naderi, M. Yoosefzadeh-Najafabadi, et al., BioTechnologia, 99(1), 73 – 81 (2018).

    Article  CAS  Google Scholar 

  62. S. Raj and P. Saudagar, “Plant cell culture as alternatives to produce secondary metabolites,” in: Natural Bio-active Compounds, Springer, Berlin (2019), pp. 265 – 286.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shmarova.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 3, pp. 33 – 41, March, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmarova, A.A., Terent’eva, O.A., Kaukhova, I.E. et al. Plant Cell Suspension Culture: Modern Approaches and Problems in Drug Production (Review). Pharm Chem J 56, 254–261 (2022). https://doi.org/10.1007/s11094-022-02628-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02628-9

Keywords

Navigation