Skip to main content
Log in

Evaluation of the Cytotoxic Effect of Hydroxypyridinone Derivatives on HCT116 and SW480 Colon Cancer Cell Lines

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

According to the literature, iron chelators have been used to inhibit tumor cell proliferation. Hydroxypyridinones, due to easy derivatization and high affinity for iron, have been suggested as an attractive target for the development of iron scavenging ligands. N-arylhydroxypyridinone derivatives as iron chelators have been previously designed and synthesized, and the present study is performed in order to evaluate the antitumor efficacy of these compounds,. Four derivatives of hydroxypyridinone were tested against HCT116 and SW480 colon cancer cell lines for 48 h using MTT assay. One compound (3-hydroxy-2-methyl-1-phenylpyridin-4(1H)-one, PMPO) showed the maximum cytotoxic activity on both HCT116 and SW480 cancer cells with IC50 = 243 and 180 μmol, respectively, for 48 h treatment. The obtained results demonstrated that various concentrations of test compounds exhibited significant reduction of the cell viability (P < 0.05) in a concentration dependent manner. Our findings indicate that the proposed hydroxypyridinone derivatives can be considered as a new option for the treatment of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. N. El-Ebiary, R. Swellem, and G. Nawwar, Pharm. Chem. J., 51(1), 39 (2017).

    Article  CAS  Google Scholar 

  2. K. Deepti, K. R. Amperayani, N. S. Yarla, and U. D. Parimi, Pharm. Chem. J., 51(4), 295 (2017).

    Article  CAS  Google Scholar 

  3. V. Shirinyan, A. Markosyan, M. Baryshnikova, et al., Pharm. Chem. J., 51(10), 867 (2018).

    Article  CAS  Google Scholar 

  4. A. Pirpour Tazehkand, M. Akbarzadeh, K. Velaie, et al., Biomed. Pharmacother., 103, 755 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. D. Sun, W. Shen, F. Zhang, et al., Biomed. Pharmacother., 101, 107 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. R. A. Smith, K. S. Andrews, D. Brooks, et al., CA Cancer J. Clin., 67(2), 100 (2017). doi:https://doi.org/10.3322/caac.21392

    Article  PubMed  Google Scholar 

  7. A. Banerjee, S. Pathak, V. D. Subramanium, et al., Drug Discovery Today, 22(8), 1224 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. S. J. Dixon and B. R. Stockwell, Nat. Chem. Biol., 10(1), 9 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. B. Keeler, M. Brookes, Brit. J. Pharmacol., 168(6), 1313 (2013).

    Article  CAS  Google Scholar 

  10. D. Richardson, Crit. Rev. Oncol. Hematol., 42(3), 267 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. S. Vogel, D. Kaufmann, M. Pojarová, et al., Bioorg. Med. Chem., 16(12), 6436 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. S. Chaves, L. Piemontese, A. Hiremathad, and M. Santos, Curr. Med. Chem., 25(1), 97 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. M. Borzoei, M. A. Zanjanchi, H. Sadeghi-aliabadi, and L. Saghaie, Food Chem., 264, 9 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. M. Borzoei, M. A. Zanjanchi, H. Sadeghi-Aliabadi, and L. Saghaie, Biol. Trace Element Res., (2019) [in press].

  15. D. Arduino, D. Silva, S. M. Cardoso, et al., Front. Biosci., 13, 6763 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. N. Mobarra, M. Shanaki, H. Ehteram, et al., Int. J. Hematol. Oncol. Stem Cell Res., 10(4), 239 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. L. Saghaie, M. M. Sadeghi, and A. Nikazma, Res. Pharm. Sci., 1(1), 40 (2007).

    Google Scholar 

  18. A. Fonseca-Nunes, P. Jakszyn, and A. Agudo, Cancer Epidemiol. Prevention Biomarkers, 23(1), 12 (2014).

    Article  CAS  Google Scholar 

  19. S. V. Torti and F. M. Torti, Nat. Rev. Cancer, 13(5), 342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. M. Bystrom and S. Rivella, Free Radical Biol. Med., 79, 337 (2015).

    Article  CAS  Google Scholar 

  21. A. Curnow, B. Mcllroy, M. Postle-Hacon, et al., Brit. J. Cancer, 78(10), 1278 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. S. P. Foy and V. Labhasetwar, Biomaterials, 32(35), 9155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Fryknäs, X. Zhang, U. Bremberg, et al., Sci. Rep., 6, 38343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D. T. Puerta, J. A. Lewis, and S. M. Cohen, J. Am. Chem. Soc., 126(27), 8388 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. G. Coombs, A. Schmitt, and C. Canning, Oncogene, 31(2), 213 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. S. Song, T. Christova, S. Perusini, et al., Cancer Res., 71(24), 7628 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjat Sadeghi-Aliabadi.

Ethics declarations

There are no potential conflicts of interest for each author concerning the submitted manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi-Aliabadi, H., Zanjanchi, M.A., Saghaie, L. et al. Evaluation of the Cytotoxic Effect of Hydroxypyridinone Derivatives on HCT116 and SW480 Colon Cancer Cell Lines. Pharm Chem J 53, 388–391 (2019). https://doi.org/10.1007/s11094-019-02010-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-019-02010-2

Keywords

Navigation