Skip to main content
Log in

Quad-atmospheric Pressure Plasma Jet (q-APPJ) Treatment of Chilli Seeds to Stimulate Germination

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In the current study, a square assembly of four quad-atmospheric pressure plasma jets (q-APPJ) is used to treat large-sized chilli seeds simultaneously. Germination and growth characteristics improve significantly after a 10-sec treatment of q-APPJ employing argon as the working gas. Plasma-treated chilli seed is more etched and porous than those untreated seed surface, as shown in scanning electron microscopy. The chemical changes of the plasma-treated seeds showed that the Ar plasma-treatment oxidise the seed surface to enhance their wettability, stimulate the water uptake, increase the water electrical conductivity and result in improved seed germination. In addition, optical emission spectroscopy is used to detect the different plasma species present and evaluate their plasma parameters (electron temperature and density). These positive results suggested that Ar plasma-treatment, in APPJ setup, improve seed germination, and potentially improve crop yield, and food security issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Setiawan U, Nurcahyo I, Saraswati T (2022) “Atmospheric pressure plasma jet for surface material modification: a mini-review,“ in Journal of Physics: Conference Series, vol. 2190, no. 1: IOP Publishing, p. 012010. https://doi.org/10.1088/1742-6596/2190/1/012010

  2. Adamovich I, Baalrud SD, Bogaerts A et al (2017) The 2017 plasma Roadmap: low temperature plasma science and technology. J Phys D 50:323001. https://doi.org/10.1088/1361-6463/aa76f5

    Article  CAS  Google Scholar 

  3. Winter J, Brandenburg R, Weltmann K (2015) Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol 24:064001. https://doi.org/10.1088/0963-0252/24/6/064001

    Article  CAS  Google Scholar 

  4. Ghimire B, Szili EJ, Short RD (2022) A conical assembly of six plasma jets for biomedical applications. Appl Phys Lett 121:084102. https://doi.org/10.1063/5.0104481

    Article  CAS  Google Scholar 

  5. Masood A, Ahmed N, Razip Wee MM et al (2023) Atmospheric pressure plasma polymerisation of D-Limonene and its antimicrobial activity. Polymers 15:307. https://doi.org/10.3390/polym15020307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaiswal S, Aguirre E, Prakash GV (2021) A KHz frequency cold atmospheric pressure argon plasma jet for the emission of O (1S) auroral lines in ambient air. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-81488-x

    Article  CAS  Google Scholar 

  7. Lu X, Laroussi M, Puech V (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol 21:034005. https://doi.org/10.1088/0963-0252/21/3/034005

    Article  CAS  Google Scholar 

  8. Fadhlalmawla SA, Mohamed A-AH, Almarashi JQ et al (2019) The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum). Plasma Sci Technol 21:105503. https://doi.org/10.1088/2058-6272/ab2a3e

    Article  CAS  Google Scholar 

  9. Lotfy K (2017) Effects of cold atmospheric plasma jet treatment on the seed germination and enhancement growth of watermelon. Open J Appl Sci 7:705. http://www.scirp.org/journal/ojapps

    Google Scholar 

  10. Ahmed N, Shahid M, Siow K et al (2022) Germination and growth improvement of papaya utilizing oxygen (O2) plasma treatment. J Phys D 55:255205. https://doi.org/10.1088/1361-6463/ac6068

    Article  Google Scholar 

  11. Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7:1822–1832. https://doi.org/10.1039/C6RA24762H

    Article  CAS  Google Scholar 

  12. Zhang X-L, Zhong C-S, Mujumdar AS et al (2019) Cold plasma pretreatment enhances drying kinetics and quality attributes of Chili pepper (Capsicum annuum L). J Food Eng 241:51–57. https://doi.org/10.1016/j.jfoodeng.2018.08.002

    Article  CAS  Google Scholar 

  13. López-Valdez A, Alvarado-Vázquez M, Díaz-Jiménez L et al (2020) Effect of temperature and storage time on the concentration of some phytohormones and germination of piquin Chili pepper seeds Capsicum annuum var. glabriusculum (Dunal) Heiser & Pickersgill. Polibotánica. 83–95. https://doi.org/10.18387/polibotanica.50.6

  14. Castillo OG, Sánchez PD, Marín-Sánchez J et al (2018) Relieving dormancy and improving germination of Piquín Chili pepper (Capsicum annuum var. glabriusculum) by priming techniques. Cogent Food & Agriculture 4:1550275. https://doi.org/10.1080/23311932.2018.1550275

    Article  CAS  Google Scholar 

  15. Ahmed N, Masood A, Siow KS et al (2022) Effects of Oxygen (O2) plasma treatment in promoting the germination and growth of Chili. Plasma Chem Plasma Process 42:91–108. https://doi.org/10.1007/s11090-021-10206-2

    Article  CAS  Google Scholar 

  16. Rules I (2016) International seed testing association. ISTA Germination Sec Chapter 19:19–41

    Google Scholar 

  17. Ahmed N, Masood A, Siow KS et al (2021) Effect of H2O-Based low-pressure plasma (LPP) treatment on the germination of Bambara Groundnut seeds. Agronomy 11:338. https://doi.org/10.3390/agronomy11020338

    Article  CAS  Google Scholar 

  18. Ahmed N, Siow KS, Wee MMR et al (2023) A study to examine the ageing behaviour of cold plasma-treated agricultural seeds. Sci Rep 13:1675. https://doi.org/10.1038/s41598-023-28811-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Masood A, Ahmed N, Mohd Razip Wee M et al (2022) Pulsed plasma polymerisation of Carvone: chemical characterization and enhanced antibacterial properties. Surf Innovations 1–11. https://doi.org/10.1680/jsuin.22.00042

  20. Hosseini SI, Mohsenimehr S, Hadian J et al (2018) Physico-chemical induced modification of seed germination and early development in artichoke (Cynara scolymus L.) using low energy plasma technology. Phys Plasmas 25:013525. https://doi.org/10.1063/1.5016037

    Article  CAS  Google Scholar 

  21. Onishi H, Yamazaki F, Hakozaki Y et al (2021) Measurement of electron temperature and density of atmospheric-pressure non-equilibrium argon plasma examined with optical emission spectroscopy. Jpn J Appl Phys 60:026002. https://doi.org/10.35848/1347-4065/abd0c8

    Article  CAS  Google Scholar 

  22. Das S, Das DP, Sarangi CK et al (2018) Optical Emission Spectroscopy Study of Ar–H 2 plasma at Atmospheric pressure. IEEE Trans Plasma Sci 46:2909–2915. https://doi.org/10.1109/TPS.2018.2850855

    Article  CAS  Google Scholar 

  23. Qayyum A, Ikram M, Zakaullah M et al (2003) Characterization of argon plasma by use of optical emission spectroscopy and Langmuir probe measurements. Int J Mod Phys B 17:2749–2759. https://doi.org/10.1142/S0217979203018454

    Article  CAS  Google Scholar 

  24. Mukherjee D, Rai A, Zachariah M (2006) Quantitative laser-induced breakdown spectroscopy for aerosols via internal calibration: application to the oxidative coating of aluminum nanoparticles. J Aerosol Sci 37:677–695. https://doi.org/10.1016/j.jaerosci.2005.05.005

    Article  CAS  Google Scholar 

  25. Rauuf AF, Aadim KA (2021) Influence of Applied Voltage on the parameters of argon–lead plasma produced by DC Sputtering technique. Annals of RSCB 25:1874–1881. https://www.researchgate.net/publication/359355340

    Google Scholar 

  26. Kramida A, Ralchenko Y, Reader J. NIST Atomic Spectra Database

  27. Los A, Ziuzina D, Boehm D et al (2019) Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: effects on seed surface chemistry and characteristics. Plasma Processes Polym 16:1800148. https://doi.org/10.1002/ppap.201800148

    Article  CAS  Google Scholar 

  28. Stolárik T, Henselová M, Martinka M et al (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chemistry and plasma Processing. 35: 659–676. https://doi.org/10.1007/s11090-015-9627-8

  29. Tong J, He R, Zhang X et al (2014) Effects of Atmospheric pressure air plasma pretreatment on the seed germination and early growth ofAndrographis paniculata. Plasma Sci Technol 16:260–266. https://doi.org/10.1088/1009-0630/16/3/16

    Article  CAS  Google Scholar 

  30. Dhayal M, Lee S-Y, Park S-U (2006) Using low-pressure plasma for Carthamus Tinctorium L. seed surface modification. Vacuum 80:499–506. https://doi.org/10.1016/j.vacuum.2005.06.008

    Article  CAS  Google Scholar 

  31. Ahmed N, Siow KS, Wee MFMR et al (2022) “The Hydrophilization and Subsequent Hydrophobic Recovery Mechanism of Cold Plasma (CP) Treated Bambara Groundnuts,“ in Materials Science Forum, vol. 1055: Trans Tech Publ, pp. 161–169, https://doi.org/10.4028/p-y3697b

  32. Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: a Fourier Transform Infrared (FT-IR) microspectroscopy study. Appl Spectrosc 69:287–295. https://doi.org/10.1366/14-07495

    Article  CAS  PubMed  Google Scholar 

  33. Guo Q, Wang Y, Zhang H et al (2017) Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-16944-8

    Article  CAS  Google Scholar 

  34. Meng Y, Qu G, Wang T et al (2017) Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem Plasma Process 37:1105–1119. https://doi.org/10.1007/s11090-017-9799-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Malaysia Ministry of Education grant no FRGS-1-2019-STG07-UKM/02/9. AP is grateful for the financial support from PRECISE LTU.

Funding

This research was funded by Malaysia Ministry of Education grant no: FRGS-1-2019-STG07-UKM/02/9.

Author information

Authors and Affiliations

Authors

Contributions

NA, A.M. and RM wrote the main manuscript text; NA and AM prepared the figures; KSS, AP, MFWRW and KMC revised and edited the manuscript, KSS and NA project managed this research. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kim S. Siow.

Ethics declarations

Conflict of Interest

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Masood, A., Mumtaz, R. et al. Quad-atmospheric Pressure Plasma Jet (q-APPJ) Treatment of Chilli Seeds to Stimulate Germination. Plasma Chem Plasma Process 44, 509–522 (2024). https://doi.org/10.1007/s11090-023-10436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10436-6

Keywords

Navigation