Skip to main content
Log in

Effects of Collisionless and Collisional Plasma Characteristics on the Transport Mechanism of Nitrogen Ions in Nitrided Austenitic Stainless Steel

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The collisionless and collisional plasma characteristics can affect the nitrogen diffusivity in the austenitic stainless steel (ASSs) during the ion nitriding process. Hence using the trapping-detrapping model, we investigated and compared the adsorption phenomena on the transport mechanism of nitrogen ions in ASSs in the presence of collisionless and collisional plasmas. Moreover, by plotting the diffused, trapped, and total nitrogen concentrations versus the nitriding depth, it is shown that the plasma characteristics have considerable effects on the nitrided layers, especially in the initial layers. It is also indicated that the ion transport mechanism in the collisional plasma is in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parascandola S, Moller W, Williamson DL (2000) The nitrogen transport in austenitic stainless steel at moderate temperatures. Surf Coat Technol 76:2194

    CAS  Google Scholar 

  2. Roth JR (1995) Industrial Plasma Engineering. IOP Publishing, Philadelphia

    Book  Google Scholar 

  3. Moskalioviene T, Galdikas A (2019) Kinetic model of anisotropic stress assisted diffusion of nitrogen in nitrided austenitic stainless steel. Surf Coat Technol 366:277

    Article  CAS  Google Scholar 

  4. Galdikas A, Petraitiene A (2014) Modeling of nitrogen penetration in medical grade CoCrMo alloy during plasma nitriding. Mater Sci 20:1392

    Google Scholar 

  5. Lutz J, Mandi S (2009) Effect of ion energy and chemistry on layer growth processes during nitriding of CoCr alloys. Nucl Inst Methods Phys Res B 202:3747

    Google Scholar 

  6. Moskalioviene T, Galdikas A (2020) The anisotropic stress-induced diffusion and trapping of nitrogen in austenitic stainless steel during nitriding. Metals 1319:10

    Google Scholar 

  7. Zehbour P, de Al Neusvaldo L, de Raquel MF, de Gutemberg SP, Leandro BSM (2012) Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: a review. Corros Sci 58:1–11

    Article  Google Scholar 

  8. Abrasonis G, Riviere JP, Templier C, Pranevicius L, Barradas NP (2005) Flux effect on the ion-beam nitriding of austenitic stainless-steel AISI 304L. J Appl Phys 97:124906

    Article  Google Scholar 

  9. Moskalioviene T, Galdikas A, Riviere JP, Pichon L (2011) Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding. Surf Coat Technol 205:3301–3306

    Article  CAS  Google Scholar 

  10. Taghinejad J, Niknam AR, Rastkar AR, Ghomi H (2021) Time-resolved evolution of collisional transient sheath in plasma source ion implantation. Phys Scr 96:125623

    Article  Google Scholar 

  11. Ghomi H, Sharifian M, Niknam AR (2006) Effects of potential and duration of pulse width on sheath dynamics related to a target with a groove in two-dimensional simulation. J Appl Phys 100:113301

    Article  Google Scholar 

  12. Wang J, Xiong J, Shen BL (2009) Effects of high temperature and cryogenic treatment on the microstructure and abrasion resistance of a high chromium cast iron. Mater Process Technol 60:197–203

    CAS  Google Scholar 

  13. Semenov M, Kai JD, Smirnov A, Shevchenko S, Aleksandrov VA (2019) Use of glow discharge nitriding for raising the surface hardness of bearing parts from precision nickel alloys. Met Sci Heat Treat 61:173–177

    Article  CAS  Google Scholar 

  14. Jiang X, Chengzhi Z, Jie T, Shuyun J, Linlin L (2008) Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer. J Phys D Appl Phys 42:015410

    Google Scholar 

  15. Pastukh IM (2013) Neutral components in glow-discharge nitriding. Tech Phys 58:1228–1230

    Article  CAS  Google Scholar 

  16. Grigull S, Parascandola S (2000) Ion-nitriding induced plastic deformation in austenitic stainless steel. J Appl Phys 88:6925–6927

    Article  CAS  Google Scholar 

  17. Liebermann MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  18. Goeckner MJ, Nelson CT, Sant SP, Jindal AK, Joseph EA, Zhou BS, Padron-wells G, Jarvis B, Pierce R, Overzet L (2008) Plasma-surface interactions. J Phys Conf Ser 133:012010

    Article  Google Scholar 

  19. Marinov D, Guaitella O, de Arcos T, von Keudell A, Rousseau A (2014) Adsorption and reactivity of nitrogen atoms on silica surface under plasma exposure. J Phys D Appl Phys 47:475204

    Article  Google Scholar 

  20. Riemann K-U (1997) The influence of collisions on the plasma sheath transition. Phys Plasmas 4:4158–4166

    Article  CAS  Google Scholar 

  21. Riemann K-U, Ehlemann U, Wiesemann K (1992) The ion energy distribution in front of a negative wall. J Phys D Appl Phys 25:620

    Article  CAS  Google Scholar 

  22. Martinavicius A, Abrasonis G, Scheinost AC, Danoix R, Stinville F, Talut JC, Templier G, Liedke C, Gemming O, Moller W (2012) Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel. Acta Mater 60:4065–4076

    Article  CAS  Google Scholar 

  23. Ichii K, Fujimura K, Takao T (1991) Sputtering, deposition, and diffusion in ion-nitriding of an austenitic stainless steel. Mater Sci Eng A 140:442–447

    Article  Google Scholar 

  24. Dwivedi CB, Deka U, Sarma A (2004) Sheath equivalent electrical circuit model for equilibrium child sheath description. Phys Scr 69:108–114

    Article  CAS  Google Scholar 

  25. Akhlaghipour N, Niknam AR, Komaizi D (2020) Particle in cell simulations of the pulsed plasma sheath: dependence on pulse parameters. J Electrostat 117:103723

    Article  Google Scholar 

  26. Lisovskiy VA, Artushenko KP, Yegorenkov VD (2016) Child-Langmuir law applicability for a cathode sheath description of glow discharge in hydrogen. Phys Scr 91:085601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Niknam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghinejad, J., Niknam, A.R. Effects of Collisionless and Collisional Plasma Characteristics on the Transport Mechanism of Nitrogen Ions in Nitrided Austenitic Stainless Steel. Plasma Chem Plasma Process 43, 921–931 (2023). https://doi.org/10.1007/s11090-023-10334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10334-x

Keywords

Navigation