Skip to main content
Log in

Mechanisms of the Hydrogen Influence on the Diffusivity of Nitrogen During Plasma Nitriding Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of hydrogen on the diffusivity of nitrogen in plasma nitriding process of austenitic stainless steel (ASS) is analyzed by the presented theoretical calculations. Both processes in the bulk and on the surface are taken into account and involved into calculations. The internal stress assisted hydrogen and nitrogen diffusion in ASS taking place during plasma nitriding using various mixtures of nitrogen, and hydrogen is concerned as a key element of elucidation of nitrogen transport in expanded austenite. A systematic model for nitrogen transport in ASS that takes into account the hydrogen actions at steel surface, hydrogen, and nitrogen diffusion with concentration-dependent diffusion coefficient and stress interaction is proposed. It is shown that diffusion behavior of nitrogen in steel is affected by not only hydrogen and nitrogen concentration but also, the stress induced by interstitial solutes atoms expanding the lattice of the alloy. Increase of total hydrogen and nitrogen concentration in steel leads to increase of a gradient in the compositionally induced stress and, as result, the driving force for the diffusion of nitrogen increases, i.e., the nitrogen atoms diffuse deeper into the steel. Moreover, it was shown that the addition of hydrogen in H2-N2 mixture flux with concentrations in the range ~ (30 to 40) pct enhances nitrogen penetration into steel due to the hydrogen actions at steel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. [1] A. Saker, Ch. Leroy, H. Michel, C. Frantz: Mater. Sci. Eng. A, 1991, vol. 140, pp. 702-708.

    Article  Google Scholar 

  2. [2] K. H. Lo, C. H. Shek, J. K. L. Lai: Mater. Sci. Eng., 2009, vol. R65 4-6, pp. 39-104.

    Article  Google Scholar 

  3. [3] H. Dong: Int. Mater. Rev., 2010, vol. 55, pp. 65-98.

    Article  Google Scholar 

  4. [4] E. De Las Heras, G. Ybarra, D. Lamas, A. Cabo, E. L. Dalibon, S. P. Brühl: Surf. Coat. Technol., 2017, vol. 313, pp. 47-54.

    Article  Google Scholar 

  5. [5] K. Ichii, K. Fujimura, T. Takase: Technol. Rep. Kansai Univ., 1986, vol. 27, pp. 135-144.

    Google Scholar 

  6. T. Christiansen, M.A.J. Somers: e-Structure, 2006, vol. 9, pp. 1-17.

    Google Scholar 

  7. [7] M. Rahman, J. Haider, M.S.J. Hashmi: Surf. Coat. Technol., 2005, vol. 200, pp. 1645-1651.

    Article  Google Scholar 

  8. [8] T. Czerwiec, N. Renevier, H. Michel: Surf. Coat. Technol., 2000, vol. 131, pp. 267-277.

    Article  Google Scholar 

  9. [9] M.P. Fewell, D.R.G. Mitchell, J.M. Priest, K.T. Short, G.A. Collins: Surf. Coat. Technol., 2000, vol. 131, pp. 300-306.

    Article  Google Scholar 

  10. [10] M.K. Lei, Z.L. Zhang: J. Vac. Sci. Technol., 1995, vol. A13, pp. 2986-2990.

    Article  Google Scholar 

  11. [11] E. Menthe and K.-T. Rie: Surf. Coat. Technol., 1999, vol. 116-119, pp. 199-204.

    Article  Google Scholar 

  12. [12] Y. Zhao, B. Yu, L. Dong, H. Du, J. Xiao: Surf. Coat. Technol., 2012, vol. 210, pp. 90-96.

    Article  Google Scholar 

  13. [13] J.M. Priest, M.J. Baldwin, M.P. Fewell, S.C. Haydon, G.A. Collins, K.T. Short, J. Tendys: Thin Solid Films, 1999, vol. 345, pp. 113-118.

    Article  Google Scholar 

  14. [14] S. Mändl, B. Fritzsche, D. Manova, D. Hirsch, H. Neumann, E. Richter, B. Rauschenbach: Surf. Coat. Technol., 2005, vol. 195, pp. 258-263.

    Article  Google Scholar 

  15. [15] T. Czerwiec, H. Michel, E. Bergmann: Surf. Coat. Technol., 1998, vol. 108-109, pp. 182-190.

    Article  Google Scholar 

  16. [16] A. Szasz, D.J. Fabian, A. Hendry, Z. Szaszne-Csih: J. Appl. Phys., 1989, vol. 66, pp. 5598-5601.

    Article  Google Scholar 

  17. [17] G.G. Tibbets: J. Appl. Phys., 1974, vol. 45, pp. 5072-5073.

    Article  Google Scholar 

  18. [18] M. Hudis: J. Appl. Phys., 1973, vol. 44, pp. 1489-1496.

    Article  Google Scholar 

  19. [19] J. Bougdira, G. Henrion, M. Fabry: J. Phys. D-Appl. Phys., 1991, vol. 24, pp. 1076-1080.

    Article  Google Scholar 

  20. [20] J.M. Priest, M.J. Baldwin, M.P. Fewell: Surf. Coat. Technol., 2001, vol. 145, pp. 152-163.

    Article  Google Scholar 

  21. [21] D. Hovorka, J. Vlček, R. Čerstvy, J. Musil, P. Belsky, M. Ružička, J.G. Han: J. Vac. Sci. Technol., 2000, vol. A18, pp. 2715-2721.

    Article  Google Scholar 

  22. [22] A. Garamoon, U.M. Rashed, A. Abouelela, M.A. Eissa, A.H. Saudi, D.M. El-zeer, F. El-Hossary: IEEE Transactions on Plasma Science, 2006, vol. 34, pp. 1066-1073.

    Article  Google Scholar 

  23. [23] S. Kumar, M.J. Baldwin M.P. Fewell, S.C. Haydon, K.T. Short, G.A. Collins, J. Tendys: Surf. Coat. Technol., 2000, vol. 123, pp. 29-35.

    Article  Google Scholar 

  24. [24] L. Wang, X. Xu, Z. Yu, Z. Hei: Surf. Coat. Technol., 2000, vol. 124, pp. 93-96.

    Article  Google Scholar 

  25. [25] C. A. Figueroa, D. Wisnivesky, F. Alvarez: J. Appl. Phys., 2002, vol. 92, pp. 764-770.

    Article  Google Scholar 

  26. [26] C. A. Figueroa and F. Alvarez: J. Vac. Sci. Technol., 2005, vol. A23, pp. L9-L12.

    Article  Google Scholar 

  27. [27] C.A. Figueroa, S. Weber, T. Czerwiec, F. Alvarez: Scripta Mater., 2006, vol. 54, pp. 1335-1338.

    Article  Google Scholar 

  28. [28] M. Tamaki, Y. Tomii, N. Yamamoto: Plasmas and Ions, 2000, vol. 3, pp. 33-39.

    Article  Google Scholar 

  29. [29] L. Petitjean and A. Ricard: J. Phys. D-Appl. Phys., 1984, vol. 17, pp. 919-929.

    Article  Google Scholar 

  30. [30] H. Martinez, F.B. Yousif: Eur. Phys. J., 2008, vol. D46, pp. 493-498.

    Article  Google Scholar 

  31. [31] B. Baranowski: J. Less-Common Metals, 1989, vol. 154, pp. 329-353.

    Article  Google Scholar 

  32. [32] F.C. Larche, J.W. Cahn: Acta Metall., 1982, vol. 30, pp.1835-1845.

    Article  Google Scholar 

  33. [33] W.Sh. Zhang, Z.L. Zhang, X.W. Zhang: J. Alloy. Comp., 2002, vol. 336, pp. 170-175.

    Article  Google Scholar 

  34. [34] A. Adrover, M. Giona, L. Capobianco, P. Tripodi, V. Violante: Int. J. Hydrogen Energy, 2003, vol. 28, pp. 1279-1284.

    Article  Google Scholar 

  35. [35] W.S. Zhang, M.Q. Hou, H.Y. Wang, Y.B. Fu: Int. J. Hydrogen Energy, 2004, vol. 29, pp. 1165-1172.

    Article  Google Scholar 

  36. [36] K. Kandasamy: Int. J. Hydrogen Energy, 1995, vol. 20(6), pp. 455-465.

    Article  Google Scholar 

  37. [37] A.M. Simon, Z.J. Grzywna: Acta Metall. Mater., 1992, vol. 40(12), pp. 3465-3473.

    Article  Google Scholar 

  38. [38] W.S. Zhang, X.W. Zhang, Z.L. Zhang: Phys. Rev., 2000, vol. B62, pp. 8884-8890.

    Article  Google Scholar 

  39. [39] Y. Sakamoto, X.Q. Tong, F.A. Lewis: Scr. Metall. Mater., 1991, vol. 25, pp. 1629-1634.

    Article  Google Scholar 

  40. [40] A. Galdikas, T. Moskalioviene: Comp. Mater. Sci., 2010, vol. 50, pp. 796-799.

    Article  Google Scholar 

  41. [41] A. Galdikas, T. Moskalioviene: Surf. Coat. Technol., 2011, vol. 205, pp. 3742-3746.

    Article  Google Scholar 

  42. [42] T. Moskalioviene, A. Galdikas: Vacuum, 2012, vol. 86, pp. 1552-1557.

    Article  Google Scholar 

  43. [43] A. Galdikas, T. Moskalioviene: Comp. Mater. Sci., 2013, vol. 72, pp. 140-145.

    Article  Google Scholar 

  44. [44] T. Moskalioviene, A. Galdikas: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2015, vol. 46A, pp. 5588-5595.

    Article  Google Scholar 

  45. S.R. deGroot, P. Mazur: Non-Equilibrium Thermodynamics, North Holland Publ. Comp., Amsterdam, 1962.

    Google Scholar 

  46. [46] P. Zoltowski: Electrochim. Acta, 1999, vol. 44, pp. 4415-4429.

    Article  Google Scholar 

  47. [47] B. Baranowski: Advances in Thermodynamics: Flow, Diffusion and Rate Processes, Taylor and Francis, New York, 1992.

    Google Scholar 

  48. [48] T. Christiansen, M. Somers: Mater. Sci. Eng., 2006, vol. A424, pp. 181-189.

    Article  Google Scholar 

  49. [49] T. Christiansen, M. Somers: Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 2006, vol. 37, pp. 675-682.

    Article  Google Scholar 

  50. [50] N. Mingolo, A.P. Tschiptschin, C.E. Pinedo: Surf. Coat. Technol., 2006, vol. 201, pp. 4215-4218.

    Article  Google Scholar 

  51. [51] F.N. Jespersen, J. Hattel, M.A.J. Somers: Modelling Simul. Mater. Sci. Eng., 2016, vol. 24, pp. 025003-31.

    Article  Google Scholar 

  52. [52] L. Marot, A. Straboni, M. Drouet: Surf. Coat. Technol., 2001, vol. 142-144, p. 384.

    Article  Google Scholar 

  53. W.S. Gorsky, Zeit. Phys. Soviet. U.: 1935, vol. 8, pp. 457-471.

    Google Scholar 

  54. D. Ilin: Simulation of Hydrogen Diffusion in Fcc Polycrystals. Effect of Deformation and Grain Boundaries, Mechanics [physics.med-ph], Universite de Bordeaux, 2014.

  55. [55] D.G. Ulmer, C.J. Altstetter: Acta Metall. Mater., 1993, vol. 41, pp. 2235-2241.

    Article  Google Scholar 

  56. [56] M. Somers, T. Christiansen: J. Phase Equilib. Diff., 2005, vol. 26, pp. 520-528.

    Article  Google Scholar 

  57. [57] F. Fernandes, T. L. Christiansen, G. Winther, M. A. J. Somers: Acta Mater., 2015, vol. 94, pp. 271–280.

    Article  Google Scholar 

  58. [58] F. Fernandes, M. A. J. Somers, T. Christiansen: Adv. Mater. Res., 2014, vol. 996, pp. 155-161.

    Article  Google Scholar 

  59. [59] T. Moskalioviene, A. Galdikas: Mater. Sci-Medzg., 2011, vol. 17, pp. 11-15.

    Google Scholar 

  60. [60] Z. L. Zhang, T. Bell: Surf. Eng., 1985, vol. 1, p. 131.

    Article  Google Scholar 

  61. [61] A. Galdikas, S. Logothetidis, P. Patsalas, L. Pranevicius, M. Gioti: Diam. Relat. Mater., 1999, vol. 8, pp. 490-494.

    Article  Google Scholar 

  62. [62] R. Knizikevicius, A. Galdikas, A. Grigonis, L. Pranevicius, Ž. Rutkūnienė: Vacuum, 1996, vol. 47, pp. 1473-1477.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a Grant (No. S-MIP-17-103, Reg. Nr. P-MIP-17-258) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Moskalioviene.

Additional information

Manuscript submitted March 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskalioviene, T., Galdikas, A. Mechanisms of the Hydrogen Influence on the Diffusivity of Nitrogen During Plasma Nitriding Austenitic Stainless Steel. Metall Mater Trans A 50, 1021–1032 (2019). https://doi.org/10.1007/s11661-018-5014-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5014-4

Navigation