Skip to main content

Advertisement

Log in

Cell Attachment and Laminin Immobilization on Hydrogels Coated by Plasma Deposited Nitrogen, Oxygen or Sulfur Based Organic Thin Films

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Hydrogels are surfaces suitable for use as biomedical devices. Contact lenses are commonly used biomedical devices made from hydrogels. To enhance the application of contact lenses as cell delivery options, surface modification using low-pressure plasma enhanced chemical vapor deposition. The study investigated cell attachment on a few types of plasma deposited organic films: two types each of pure ethylene plasma polymer films, O-rich, N-rich and S-rich films on top of the hydrogels. The films led to changes in wettability, protein adsorption and the mechanical properties of the hydrogel surfaces, which are factors affecting cell proliferation. These films were also investigated for stability towards steam sterilisation Finally, these films stable towards water exposure and steam sterilisation were used to immobilize laminin in order to improve cell proliferation. The study investigated the possibility of using surface modified contact lenses could to deliver cell therapies to the eye environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CL:

Contact lens

PPF:

Plasma polymer film

R-LEC:

Rabbit lens epithelial cells

PPE:

Plasma polymerised ethylene

PPB:

Plasma polymerised butadiene

References

  1. Zhang LF, Yang DJ, Chen HC, Sun R, Xu L, Xiong ZC, Govender T, Xiong CD (2008) An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture. Int J Pharm 353:74–87

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y-M, Yang J-J, Osada Y, Gong JP (2010) Synthetic hydrogels as scaffolds for manipulating endothelium cell behaviors. Chin J Polym Sci 29:23–41

    Article  Google Scholar 

  3. Hassan E, Deshpande P, Claeyssens F, Rimmer S, Macneil S (2014) Amine functional hydrogels as selective substrates for corneal epithelialization. Acta Biomater 10:3029–3037

    Article  CAS  PubMed  Google Scholar 

  4. Schulz A, Gepp MM, Stracke F, Von Briesen H, Neubauer JC, Zimmermann H (2019) Tyramine-conjugated alginate hydrogels as a platform for bioactive scaffolds. J Biomed Mater Res A 107:114–121

    Article  CAS  PubMed  Google Scholar 

  5. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  6. Janse Van Rensburg A, Davies NH, Oosthuysen A, Chokoza C, Zilla P, Bezuidenhout D (2017) Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Acta Biomater 49:89–100

    Article  CAS  PubMed  Google Scholar 

  7. Geckil H, Xu F, Zhang X, Moon S, Demirci U (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) 5:469–484

    Article  CAS  PubMed  Google Scholar 

  8. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan X, Wei Y, Villasante A, Ng JJD, Arkonac DE, Chao PG, Vunjak-Novakovic G (2017) Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model. Biomaterials 132:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blache U, Ehrbar M (2018) Inspired by nature: hydrogels as versatile tools for vascular engineering. Adv Wound Care (New Rochelle) 7:232–246

    Article  PubMed  Google Scholar 

  11. Stratakis E (2018) Novel biomaterials for tissue engineering 2018. Int J Mol Sci 19:3960

    Article  PubMed  PubMed Central  Google Scholar 

  12. Assuncao-Silva RC, Gomes ED, Sousa N, Silva NA, Salgado AJ (2015) Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells Int 2015:948040

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haile Y, Berski S, Drager G, Nobre A, Stummeyer K, Gerardy-Schahn R, Grothe C (2008) The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells. Biomaterials 29:1880–1891

    Article  CAS  PubMed  Google Scholar 

  14. Hejcl A, Ruzicka J, Kapcalova M, Turnovcova K, Krumbholcova E, Pradny M, Michalek J, Cihlar J, Jendelova P, Sykova E (2013) Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels. Stem Cells Dev 22:2794–2805

    Article  CAS  PubMed  Google Scholar 

  15. Bobba, S, Di Girolamo N, Watson S (2016) Contact lens delivery of stem cells for restoring the ocular surface. In: Biomaterials and regenerative medicine in ophthalmology. pp 219–239

  16. Deshpande P, Notara M, Bullett N, Daniels JT, Haddow DB, Macneil S (2009) Development of a surface-modified contact lens for the transfer of cultured limbal epithelial cells to the cornea for ocular surface diseases. Tissue Eng Part A 15:2889–2902

    Article  CAS  PubMed  Google Scholar 

  17. Brown KD, Low S, Mariappan I, Abberton KM, Short R, Zhang H, Maddileti S, Sangwan V, Steele D, Daniell M (2014) Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency. Tissue Eng Part A 20:646–655

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kushnerev E, Shawcross SG, Sothirachagan S, Carley F, Brahma A, Yates JM, Hillarby MC (2016) Regeneration of corneal epithelium with dental pulp stem cells using a contact lens delivery system. Invest Ophthalmol Vis Sci 57:5192–5199

    Article  CAS  PubMed  Google Scholar 

  19. Masoudi S, Stapleton FJ, Willcox MDP (2016) Contact lens-induced discomfort and protein changes in tears. Optom Vis Sci 93:955–962

    Article  PubMed  Google Scholar 

  20. Chen JW, Lim K, Bandini SB, Harris GM, Spechler JA, Arnold CB, Fardel R, Schwarzbauer JE, Schwartz J (2019) Controlling the surface chemistry of a hydrogel for spatially defined cell adhesion. ACS Appl Mater Interfaces 11:15411–15416

    Article  CAS  PubMed  Google Scholar 

  21. Ino JM (2013) Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement. Biomatter 3:e25414

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bayramoglu G, Bitirim V, Tunali Y, Arica MY, Akcali KC (2013) Poly (hydroxyethyl methacrylate-glycidyl methacrylate) films modified with different functional groups: In vitro interactions with platelets and rat stem cells. Mater Sci Eng C Mater Biol Appl 33:801–810

    Article  CAS  PubMed  Google Scholar 

  23. Kim HH, Park JB, Kang MJ, Park YH (2014) Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid-dopamine conjugate. Int J Biol Macromol 70:516–522

    Article  CAS  PubMed  Google Scholar 

  24. Rout B, Girard-Lauriault PL (2021) Permeation-resistant and flexible plasma-polymerised films on 2-hydroxyethyl methacrylate hydrogels. Plasma Process Polym 18:2000191

    Article  CAS  Google Scholar 

  25. Wang YM, Qian XF, Zhang XF, Xia W, Zhong L, Sun ZT, Xia J (2013) Plasma surface modification of rigid contact lenses decreases bacterial adhesion. Eye Contact Lens-Sci Clin Pra 39:376–380

    Article  CAS  Google Scholar 

  26. Zhang LH, Wu D, Chen YS, Wang XL, Zhao GW, Wan HY, Huang CZ (2009) Surface modification of polymethyl methacrylate intraocular lenses by plasma for improvement of antithrombogenicity and transmittance. Appl Surf Sci 255:6840–6845

    Article  CAS  Google Scholar 

  27. Wang P, Tan KL, Kang ET, Neoh KG (2002) Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. J Membr Sci 195:103–114

    Article  CAS  Google Scholar 

  28. Ademovic Z, Holst B, Kahn RA, Jorring I, Brevig T, Wei J, Hou X, Winter-Jensen B, Kingshott P (2006) The method of surface PEGylation influences leukocyte adhesion and activation. J Mater Sci-Mater Med 17:203–211

    Article  CAS  PubMed  Google Scholar 

  29. Buddhadasa M, Girard-Lauriault P-L (2015) Plasma co-polymerisation of ethylene, 1,3-butadiene and ammonia mixtures: Amine content and water stability. Thin Solid Films 591:76–85

    Article  CAS  Google Scholar 

  30. Babaei S, Girard-Lauriault P-L (2016) Tuning the surface properties of oxygen-rich and nitrogen-rich plasma polymers: functional groups and surface charge. Plasma Chem Plasma Process 36:651–666

    Article  CAS  Google Scholar 

  31. Girard-Lauriault P-L, Mwale F, Iordanova M, Demers C, Desjardins P, Wertheimer MR (2005) Atmospheric pressure deposition of micropatterned nitrogen-rich plasma-polymer films for tissue engineering. Plasma Process Polym 2:263–270

    Article  CAS  Google Scholar 

  32. Hegedus O, Juriga D, Sipos E, Voniatis C, Juhasz A, Idrissi A, Zrinyi M, Varga G, Jedlovszky-Hajdu A, Nagy KS (2019) Free thiol groups on poly(aspartamide) based hydrogels facilitate tooth-derived progenitor cell proliferation and differentiation. PLoS ONE 14:e0226363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Galli C, Parisi L, Elviri L, Bianchera A, Smerieri A, Lagonegro P, Lumetti S, Manfredi E, Bettini R, Macaluso GM (2016) Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion. Biomed Mater 11:015004

    Article  CAS  PubMed  Google Scholar 

  34. Wargenau A, Fekete N, Beland AV, Sabbatier G, Bowden OM, Boulanger MD, Hoesli CA (2019) Protein film formation on cell culture surfaces investigated by quartz crystal microbalance with dissipation monitoring and atomic force microscopy. Colloids Surf B Biointerfaces 183:110447

    Article  CAS  PubMed  Google Scholar 

  35. Babaei S, Fekete N, Hoesli CA, Girard-Lauriault PL (2018) Adhesion of human monocytes to oxygen- and nitrogen- containing plasma polymers: effect of surface chemistry and protein adsorption. Colloids Surf B Biointerfaces 162:362–369

    Article  CAS  PubMed  Google Scholar 

  36. Ratner BD, Horbett T, Hoffman AS, Hauschka SD (1975) Cell adhesion to polymeric materials: implications with respect to biocompatibility. J Biomed Mater Res 9:407–422

    Article  CAS  PubMed  Google Scholar 

  37. Carette X, Mincheva R, Herbin M, Cabecas Segura P, Wattiez R, Noirfalise X, Thai C, Leclere P, Godfroid T, Boudifa M, Kerdjoudj H, Jolois O, Raquez JM (2021) Microwave atmospheric plasma: a versatile and fast way to confer antimicrobial activity toward direct chitosan immobilization onto poly(lactic acid) substrate. ACS Appl Bio Mater 4:7445–7455

    Article  CAS  PubMed  Google Scholar 

  38. Olivero DK, Furcht LT (1993) Type IV collagen, laminin, and fibronectin promote the adhesion and migration of rabbit lens epithelial cells in vitro. Invest Ophthalmol Vis Sci 34:2825–2834

    CAS  PubMed  Google Scholar 

  39. Beake BD, Zheng S, Alexander MR (2002) Nanoindentation testing of plasma-polymerised hexane films. J Mater Sci 37:3821–3826

    Article  CAS  Google Scholar 

  40. Castillo EJ, Koenig JL, Andersen JM, Lo J (1984) Characterization of protein adsorption on soft contact lenses: I. Conformational changes of adsorbed human serum albumin. Biomaterials 5:319–325

    Article  CAS  PubMed  Google Scholar 

  41. Surewicz WK, Mantsch HH (1988) New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta BBA Protein Struct Mol Enzymol 952:115–130

    CAS  Google Scholar 

  42. Lin C-H, Jao W-C, Yeh Y-H, Lin W-C, Yang M-C (2009) Hemocompatibility and cytocompatibility of styrenesulfonate-grafted PDMS-polyurethane-HEMA hydrogel. Colloids Surf B 70:132–141

    Article  CAS  Google Scholar 

  43. D’sa RA, Raj J, Mcmahon MA, Mcdowell DA, Burke GA, Meenan BJ (2012) Atmospheric pressure plasma induced grafting of poly(ethylene glycol) onto silicone elastomers for controlling biological response. J Colloid Interface Sci 375:193–202

    Article  CAS  PubMed  Google Scholar 

  44. Webb K, Hlady V, Tresco PA (2000) Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res 49:362–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Webb K, Hlady V, Tresco PA (1998) Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 41:422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bozukova D, Pagnoulle C, De Pauw-Gillet M-C, Klee D, Dupont-Gillain C, Duwez A-S, Gilbert Y, Jerome R, Jerome C (2010) Plasma surface fluorination of hydrogel materialscoating stability and in vitro biocompatibility testing. Soft Mater 8:164–182

    Article  CAS  Google Scholar 

  47. Tamada Y, Ikada Y (1993) Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J Colloid Interface Sci 155:334–339

    Article  CAS  Google Scholar 

  48. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng 11:1–18

    Article  CAS  PubMed  Google Scholar 

  49. De Souza GA, Godoy LM, Mann M (2006) Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol 7:R72

    Article  PubMed  PubMed Central  Google Scholar 

  50. Luensmann D, Heynen M, Liu L, Sheardown H, Jones L (2010) The efficiency of contact lens care regimens on protein removal from hydrogel and silicone hydrogel lenses. Mol Vis 16:79–92

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Omali NB, Subbaraman LN, Coles-Brennan C, Fadli Z, Jones LW (2015) Biological and clinical implications of lysozyme deposition on soft contact lenses. Optom Vis Sci Off Publ Am Acad Optom 92:750–757

    Article  Google Scholar 

  52. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471

    Article  CAS  PubMed  Google Scholar 

  53. Truica-Marasescu F, Wertheimer MR (2008) Nitrogen-rich plasma-polymer films for biomedical applications. Plasma Process Polym 5:44–57

    Article  CAS  Google Scholar 

  54. Surewicz WK, Mantsch HH, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment. Biochemistry 32:389–394

    Article  CAS  PubMed  Google Scholar 

  55. Trivedi R, Cech V (2010) Mechanical properties of plasma polymer film evaluated by conventional and alternative nanoindentation techniques. Surf Coat Technol 205:S286–S289

    Article  CAS  Google Scholar 

  56. Benı́Tez F, Martı́Nez E, Esteve J (2000) Improvement of hardness in plasma polymerized hexamethyldisiloxane coatings by silica-like surface modification. Thin Solid Films 377–378:109–114

    Article  Google Scholar 

  57. Almeida LS, Souza ARM, Costa LH, Rangel EC, Manfrinato MD, Rossino LS (2020) Effect of nitrogen in the properties of diamond-like carbon (DLC) coating on Ti6Al4V substrate. Mater Res Express 7:065601

    Article  CAS  Google Scholar 

  58. Thiry D, De Vreese A, Renaux F, Colaux JL, Lucas S, Guinet Y, Paccou L, Bousser E, Snyders R (2016) Toward a better understanding of the influence of the hydrocarbon precursor on the mechanical properties of a-C: H coatings synthesized by a hybrid PECVD/PVD method. Plasma Process Polym 13:316–323

    Article  CAS  Google Scholar 

  59. Fereol S, Fodil R, Labat B, Galiacy S, Laurent VM, Louis B, Isabey D, Planus E (2006) Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cell Motil Cytoskeleton 63:321–340

    Article  PubMed  Google Scholar 

  60. Hopp I, Michelmore A, Smith LE, Robinson DE, Bachhuka A, Mierczynska A, Vasilev K (2013) The influence of substrate stiffness gradients on primary human dermal fibroblasts. Biomaterials 34:5070–5077

    Article  CAS  PubMed  Google Scholar 

  61. Stahel P, Mazankova V, Tomeckova K, Matouskova P, Brablec A, Prokes L, Jurmanova J, Bursikova V, Pribyl R, Lehocky M, Humpolicek P, Ozaltin K, Trunec D (2019) Atmospheric pressure plasma polymerized oxazoline-based thin films-antibacterial properties and cytocompatibility performance. Polymers (Basel) 11:2069

    Article  CAS  PubMed  Google Scholar 

  62. Girard-Lauriault P-L, Truica-Marasescu F, Petit A, Wang HT, Desjardins P, Antoniou J, Mwale F, Wertheimer MR (2009) Adhesion of human U937 monocytes to nitrogen-rich organic thin films: Novel insights into the mechanism of cellular adhesion. Macromol Biosci 9:911–921

    Article  CAS  PubMed  Google Scholar 

  63. Alibeik S, Rizkalla AS, Mequanint K (2007) The effect of thiolation on the mechanical and protein adsorption properties of polyurethanes. Eur Polym J 43:1415–1427

    Article  CAS  Google Scholar 

  64. Summonte S, Racaniello GF, Lopedota A, Denora N, Bernkop-Schnurch A (2021) Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J Control Release 330:470–482

    Article  CAS  PubMed  Google Scholar 

  65. Fischer NG, He J, Aparicio C (2020) Surface immobilization chemistry of a laminin-derived peptide affects keratinocyte activity. Coatings (Basel) 10:560

    Article  CAS  PubMed  Google Scholar 

  66. Siow KS, Britcher L, Kumar S, Griesser HJ (2017) Plasma polymers containing sulfur and their co-polymers with 1,7-octadiene: chemical and structural analysis. Plasma Process Polym 14:1600044

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lisa Danielczak for training and support, and Prof. Richard Leask for granting generous access to his laboratory facilities for cell culture studies.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Pierre-Luc Girard-Lauriault.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 642 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, B., Girard-Lauriault, PL. Cell Attachment and Laminin Immobilization on Hydrogels Coated by Plasma Deposited Nitrogen, Oxygen or Sulfur Based Organic Thin Films. Plasma Chem Plasma Process 43, 709–736 (2023). https://doi.org/10.1007/s11090-023-10319-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10319-w

Keywords

Navigation