Skip to main content
Log in

Synthesis and Growth of Onion-Like Polyhedral Graphitic Nanocapsules by Thermal Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Graphitic nanocapsules (GNCs) are onion-like carbon structures consisting of concentric polyhedral multilayer shells. GNCs exhibit outstanding physicochemical properties, such as large specific surface area, high electrical conductivity and broad absorption spectra. Their unique structure and interesting properties make them suitable for a range of potential applications. However, current GNCs synthesis methods are hampered by poor yield and/or low purity, which prevents their integration into large-scale applications. In this work, a fast and efficient process for the synthesis of GNCs is presented. Onion-like polyhedral GNCs with diameters between 70 and 300 nm are produced in a one-step process without catalyst by thermal decomposition of methane using a plasma torch. With the present system, GNCs are synthesized semi-continuously at a production rate of ∼ 20 g.h−1 using 1.5 slpm of methane at 82 kPa. The effects of the pressure and the methane flow rate on the morphologies of carbon nanostructures are examined by high-resolution transmission electron microscopy (HR-TEM). The results show a progressive evolution of the morphology from graphene nanoflakes (GNFs) to GNCs with increasing pressure or methane flow rate. We discuss two different nucleation mechanisms to explain the shape of GNFs: the first starts with the curling of a graphene nanoflake while the second involves the delamination of a GNFs into a bowl or a cylinder. Once the first few shells are formed, the growth of the shell-specific crystalline facets occurs with the epitaxial addition of carbon adatoms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao J, Wei N, Fan Z et al (2013) The mechanical properties of three types of carbon allotropes. Nanotechnology 24:095702. https://doi.org/10.1088/0957-4484/24/9/095702

    Article  CAS  PubMed  Google Scholar 

  2. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822. https://doi.org/10.1021/cr500304f

    Article  CAS  PubMed  Google Scholar 

  3. Falcao EH, Wudl F (2007) Carbon allotropes: beyond graphite and diamond. J Chem Technol Biotechnol 82:524–531. https://doi.org/10.1002/jctb.1693

    Article  CAS  Google Scholar 

  4. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71. https://doi.org/10.1080/10408430903505036

    Article  CAS  Google Scholar 

  5. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297:787–792. https://doi.org/10.1126/science.106092

    Article  CAS  PubMed  Google Scholar 

  6. Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10:1066. https://doi.org/10.3390/ma10091066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  PubMed  Google Scholar 

  8. Ugarte D (1995) Onion-like graphitic particles. Carbon 33:989–993. https://doi.org/10.1016/0008-6223(95)00027-B

    Article  CAS  Google Scholar 

  9. Suslova E, Epishev V, Maslakov K et al (2021) Transformation of graphene nanoflakes into onion-like carbon during spark plasma sintering. Appl Surf Sci 535:147724. https://doi.org/10.1016/j.apsusc.2020.147724

    Article  CAS  Google Scholar 

  10. Alessandro F, Scarcello A, Valverde MDB et al (2018) Selective synthesis of turbostratic polyhedral carbon nano-onions by arc discharge in water. Nanotechnology 29:325601. https://doi.org/10.1088/1361-6528/aac4ca

    Article  CAS  PubMed  Google Scholar 

  11. Jin H, Wu S, Li T et al (2019) Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors. Appl Surf Sci 488:593–599. https://doi.org/10.1016/j.apsusc.2019.05.308

    Article  CAS  Google Scholar 

  12. Liu T-C, Li Y-Y (2006) Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method. Carbon 44:2045–2050. https://doi.org/10.1016/j.carbon.2006.01.032

    Article  CAS  Google Scholar 

  13. Chen XH, Yang HS, Wu GT et al (2000) Generation of curved or closed-shell carbon nanostructures by ball-milling of graphite. J Cryst Growth 218:57–61. https://doi.org/10.1016/S0022-0248(00)00486-3

    Article  CAS  Google Scholar 

  14. Wang Y, Yan F, Liu SW et al (2013) Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. J Mater Chem A 1:5212–5216. https://doi.org/10.1039/C3TA10559H

    Article  CAS  Google Scholar 

  15. Wang Y, Han ZJ, Yu SF et al (2013) Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon 64:230–236. https://doi.org/10.1016/j.carbon.2013.07.057

    Article  CAS  Google Scholar 

  16. Shenderova O, Grishko V, Cunningham G et al (2008) Onion-like carbon for terahertz electromagnetic shielding. Diam Relat Mater 17:462–466. https://doi.org/10.1016/j.diamond.2007.08.023

    Article  CAS  Google Scholar 

  17. Maksimenko SA, Rodionova VN, Slepyan GY et al (2007) Attenuation of electromagnetic waves in onion-like carbon composites. Diam Relat Mater 16:1231–1235. https://doi.org/10.1016/j.diamond.2006.11.025

    Article  CAS  Google Scholar 

  18. Shaibani M, Smith SJD, Banerjee PC et al (2017) Framework-mediated synthesis of highly microporous onion-like carbon: energy enhancement in supercapacitors without compromising power. J Mater Chem A 5:2519–2529. https://doi.org/10.1039/C6TA07098A

    Article  CAS  Google Scholar 

  19. Wang Y, Yu SF, Sun CY et al (2012) MnO2/onion-like carbon nanocomposites for pseudocapacitors. J Mater Chem 22:17584–17588. https://doi.org/10.1039/C2JM33558A

    Article  CAS  Google Scholar 

  20. Pech D, Brunet M, Durou H et al (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654. https://doi.org/10.1038/nnano.2010.162

    Article  CAS  PubMed  Google Scholar 

  21. Xu B, Yang X, Wang X et al (2006) A novel catalyst support for DMFC: onion-like fullerenes. J Power Sour 162:160–164. https://doi.org/10.1016/j.jpowsour.2006.06.063

    Article  CAS  Google Scholar 

  22. Cabioc’h T, Thune E, Rivière JP et al (2002) Structure and properties of carbon onion layers deposited onto various substrates. J Appl Phys 91:1560–1567. https://doi.org/10.1063/1.1421222

    Article  CAS  Google Scholar 

  23. Hirata A, Igarashi M, Kaito T (2004) Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles. Tribol Int 37:899–905. https://doi.org/10.1016/j.triboint.2004.07.006

    Article  CAS  Google Scholar 

  24. Street KW, Marchetti M, Vander Wal RL, Tomasek AJ (2004) Evaluation of the tribological behavior of nano-onions in Krytox 143AB. Tribol Lett 16:143–149. https://doi.org/10.1023/B:TRIL.0000009724.01711.f4

    Article  CAS  Google Scholar 

  25. Joly-Pottuz L, Vacher B, Ohmae N et al (2008) Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol Lett 30:69–80. https://doi.org/10.1007/s11249-008-9316-3

    Article  CAS  Google Scholar 

  26. Yao Y, Wang X, Guo J et al (2008) Tribological property of onion-like fullerenes as lubricant additive. Mater Lett 62:2524–2527. https://doi.org/10.1016/j.matlet.2007.12.056

    Article  CAS  Google Scholar 

  27. Zeiger M, Jäckel N, Aslan M et al (2015) Understanding structure and porosity of nanodiamond-derived carbon onions. Carbon 84:584–598. https://doi.org/10.1016/j.carbon.2014.12.050

    Article  CAS  Google Scholar 

  28. Rho Y, Kang H, Grigoropoulos CP, Kang K-T (2020) Site-selective synthesis of onion like carbon from nanodiamond thin film via laser-assisted photothermal process. Appl Phys A 126:703. https://doi.org/10.1007/s00339-020-03875-x

    Article  CAS  Google Scholar 

  29. Banhart F (1999) Irradiation effects in carbon nanostructures. Rep Prog Phys 62:1181–1221. https://doi.org/10.1088/0034-4885/62/8/201

    Article  CAS  Google Scholar 

  30. Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709. https://doi.org/10.1038/359707a0

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Martin T, Rincon-Arevalo P, Campos-Martin G (2013) Method to obtain carbon nano-onions by pyrolisys of propane. Open Physics 11:1548–1558. https://doi.org/10.2478/s11534-013-0294-1

    Article  CAS  Google Scholar 

  32. Koshio A, Katagiri Y, Yamamoto M, Kokai F (2018) Formation of polyhedral graphite particles by high-density carbon arc discharge with ethanol vapor. Vacuum 156:165–171. https://doi.org/10.1016/j.vacuum.2018.07.030

    Article  CAS  Google Scholar 

  33. Zhang D, Xie Z, Zhang K et al (2021) Controlled regulation of the transformation of carbon nanomaterials under H2 mixture atmosphere by arc plasma. Chem Eng Sci 241:116695. https://doi.org/10.1016/j.ces.2021.116695

    Article  CAS  Google Scholar 

  34. Wang C, Imahori T, Tanaka Y et al (2001) Synthesis of fullerenes from carbon powder by using high power induction thermal plasma. Thin Solid Films 390:31–36. https://doi.org/10.1016/S0040-6090(01)00937-3

    Article  CAS  Google Scholar 

  35. Kim KS, Cota-Sanchez G, Kingston CT et al (2007) Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D Appl Phys 40:2375–2387. https://doi.org/10.1088/0022-3727/40/8/S17

    Article  CAS  Google Scholar 

  36. Aissou T, Braidy N, Veilleux J (2022) A new one-step deposition approach of graphene nanoflakes coating using a radio frequency plasma: Synthesis, characterization and tribological behaviour. Tribol Int 167:107406. https://doi.org/10.1016/j.triboint.2021.107406

    Article  CAS  Google Scholar 

  37. Casteignau F, Aissou T, Allard C et al (2022) Synthesis of carbon nanohorns by inductively coupled plasma. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-022-10240-8

    Article  Google Scholar 

  38. Ricolleau C, Nelayah J, Oikawa T et al (2013) Performances of an 80–200 kV microscope employing a cold-FEG and an aberration-corrected objective lens. Microscopy 62:283–293. https://doi.org/10.1093/jmicro/dfs072

    Article  CAS  PubMed  Google Scholar 

  39. Lian W, Song H, Chen X et al (2008) The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1000 °C using an iron catalyst. Carbon 46:525–530. https://doi.org/10.1016/j.carbon.2007.12.024

    Article  CAS  Google Scholar 

  40. Pristavita R, Meunier JL, Berk D (2011) Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem Plasma Process 31:393–403. https://doi.org/10.1007/s11090-011-9289-0

    Article  CAS  Google Scholar 

  41. Malesevic A, Vitchev R, Schouteden K et al (2008) Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19:305604. https://doi.org/10.1088/0957-4484/19/30/305604

    Article  CAS  PubMed  Google Scholar 

  42. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotech 8:235–246. https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  43. Ferrari AC, Meyer JC, Scardaci V et al (2006). Raman Spectr Graphene Graphene Layers. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  Google Scholar 

  44. Li ZQ, Lu CJ, Xia ZP et al (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695. https://doi.org/10.1016/j.carbon.2007.03.038

    Article  CAS  Google Scholar 

  45. Meunier JL, Mendoza-Gonzalez NY, Pristavita R et al (2014) Two-dimensional geometry control of graphene nanoflakes produced by thermal plasma for catalyst applications. Plasma Chem Plasma Process 34:505–521. https://doi.org/10.1007/s11090-014-9524-6

    Article  CAS  Google Scholar 

  46. Kim KS, Moradian A, Mostaghimi J et al (2009) Synthesis of single-walled carbon nanotubes by induction thermal plasma. Nano Res 2:800–817. https://doi.org/10.1007/s12274-009-9085-9

    Article  CAS  Google Scholar 

  47. Kim KS, Moradian A, Mostaghimi J, Soucy G (2010) Modeling of induction plasma process for fullerene synthesis: effect of plasma gas composition and operating pressure. Plasma Chem Plasma Process 30:91–110. https://doi.org/10.1007/s11090-009-9211-1

    Article  CAS  Google Scholar 

  48. Fabry F, Flamant G, Fulcheri L (2001) Carbon black processing by thermal plasma. Analysis of the particle formation mechanism. Chem Eng Sci 56:2123–2132. https://doi.org/10.1016/S0009-2509(00)00486-3

    Article  CAS  Google Scholar 

  49. Pristavita R, Mendoza-Gonzalez N-Y, Meunier J-L, Berk D (2010) Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-010-9218-7

    Article  Google Scholar 

  50. Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications. Springer, US

    Book  Google Scholar 

  51. Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modelling. J Phys D Appl Phys 38:R153–R183. https://doi.org/10.1088/0022-3727/38/9/R01

    Article  CAS  Google Scholar 

  52. Davydov VA, Shiryaev AA, Rakhmanina AV et al (2011) Transformations of polyhedral carbon nanoparticles under high pressures and temperatures. Carbon 7:2389–2401. https://doi.org/10.1016/j.carbon.2011.02.006

    Article  CAS  Google Scholar 

  53. Stranski IN, Krastanow L (1937) Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatsh Chem 71:351–364. https://doi.org/10.1007/BF01798103

    Article  Google Scholar 

  54. Chen X, Yi C, Ke C (2015) Bending stiffness and interlayer shear modulus of few-layer graphene. Appl Phys Lett 106:101907. https://doi.org/10.1063/1.4915075

    Article  CAS  Google Scholar 

  55. Chuvilin A, Kaiser U, Bichoutskaia E et al (2010) Direct transformation of graphene to fullerene. Nature Chem 2:450–453. https://doi.org/10.1038/nchem.644

    Article  CAS  Google Scholar 

  56. Ozawa M, Goto H, Kusunoki M, Ōsawa E (2002) Continuously growing spiral carbon nanoparticles as the intermediates in the formation of fullerenes and nanoonions. J Phys Chem B 106:7135–7138. https://doi.org/10.1021/jp025639z

    Article  CAS  Google Scholar 

  57. Huang JY, Yasuda H, Mori H (1999) Highly curved carbon nanostructures produced by ball-milling. Chem Phys Lett 303:130–134. https://doi.org/10.1016/S0009-2614(99)00131-1

    Article  CAS  Google Scholar 

  58. Zhang S, Cui Y, Wu B et al (2014) Control of graphitization degree and defects of carbon blacks through ball-milling. RSC Adv 4:505–509. https://doi.org/10.1039/C3RA44530E

    Article  CAS  Google Scholar 

  59. Direct imaging of construction of carbon onions by curling few-layer graphene flakes—physical Chemistry Chemical Physics (RSC Publishing). https://pubs.rsc.org/en/content/articlelanding/2018/cp/c7cp07063b. Accessed 21 Oct 2021

  60. Lambin P (2014) Elastic properties and stability of physisorbed graphene. Appl Sci 4:282–304. https://doi.org/10.3390/app4020282

    Article  CAS  Google Scholar 

  61. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  62. Koskinen P (2013) Bending-induced delamination of van der Waals solids. J Phys Condens Matter 25:395303. https://doi.org/10.1088/0953-8984/25/39/395303

    Article  CAS  PubMed  Google Scholar 

  63. Steward EG, Cook BP, Kellett EA (1960) Dependence on temperature of the interlayer spacing in carbons of different graphitic perfection. Nature 187:1015–1016. https://doi.org/10.1038/1871015a0

    Article  CAS  Google Scholar 

  64. Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem Phys 11:299–300. https://doi.org/10.1063/1.1723844

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Green Surface Engineering for Advanced Manufacturing (Green-SEAM), a Strategic Network funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chair Program, and Université de Sherbrooke. The authors also appreciate the technical support of Dr. Kossi Béré from the Plasma Process and Integration of Nanomaterials lab. We would like to thank Charles Bertrand and Stéphane Gutierrez from the Plateforme de Recherche et d’Analyse des Matériaux (PRAM) and Frédéric Voisard of Université de Sherbrooke for their help in the acquisition of data related to material characterization. We are very grateful to the MEANS team (Microscopie Electronique Avancée et Nano-Structures) of the University of Paris for helping us with the JEOL microscope.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taki Aissou or Jocelyn Veilleux.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aissou, T., Casteignau, F., Braidy, N. et al. Synthesis and Growth of Onion-Like Polyhedral Graphitic Nanocapsules by Thermal Plasma. Plasma Chem Plasma Process 43, 413–427 (2023). https://doi.org/10.1007/s11090-023-10314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10314-1

Keywords

Navigation