Skip to main content
Log in

Study of Ablation Phenomena of Polymer Bulk Irradiated by Thermal Plasmas Using Induction Thermal Plasma Technique

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Thermal polymer-ablation phenomena have been investigated by direct irradiation of thermal plasmas to polymer bulk specimens using inductively coupled thermal plasma (ICTP) technique. Understanding polymer-ablation phenomena is crucially important, for example, for the design of small high-voltage circuit breakers and polymer-ablation-assisted low-voltage circuit breakers. The ICTP technique was irradiated directly for this study because it offers benefits of repeatability, good controllability, and no contamination. For this experiment, the Ar induction thermal plasma was irradiated directly to bulk polymer solids of five kinds, which results in thermal ablation of polymer bulks. Spectroscopic observations were conducted to measure the C\(_2\) spectra. The C\(_2\) vibrational and rotational temperatures were estimated in different polymer-ablated vapors. Furthermore, the measured mass loss and power loss attributable to ablation were compared among the different five polymer materials. The developed numerical model can predict polymer ablation because of thermal flux in terms of temperature decay and mass loss, which also provides physical insights into polymer-ablation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Ibrahim EZ (1980) The ablation dominated polymethylmethacrylate arc. J Phys D Appl Phys 13:2045–2066

    Article  CAS  Google Scholar 

  2. Andre P (1996) Composition and thermodynamic properties of ablated vapours of PMMA, PA6-6, PETP, POM and PE. J Phys D Appl Phys 29:1963–1972

    Article  CAS  Google Scholar 

  3. Andre P (1997) The influence of graphite on the composition and thermodynamic properties of plasma formed in ablated vapour of PMMA, PA6-6, PETP, POM and PE used in circuit-breakers. J Phys D Appl Phys 30:475–493

    Article  CAS  Google Scholar 

  4. Chervy B, Riad H, Gleizes A (1996) Calculation of the interruption capability of SF\(_{6}\)-CF\(_{4}\) and SF\(_{6}\)-C\(_{2}\)F\(_{6}\) mixture–part I: plasma properties. IEEE Trans on Plasma Sci 24:198–209

    Article  CAS  Google Scholar 

  5. Chervy B, Gonzalez JJ, Gleizes A (1996) Calculation of the interruption capability of SF\(_6\)-CF\(_4\) and SF\(_6\)-C\(_2\)F\(_6\) mixtures—part II. Arc decay modeling. IEEE Trans on Plasma Sci 24:210–217

    Article  CAS  Google Scholar 

  6. Chevrier P, Barrault M, Fievet C, Maftoul J, Fremillon JM (1997) Industrial applications of high-, medium- and low-voltage arc modelling. J Phys D Appl Phys 30:1346–1355

    Article  CAS  Google Scholar 

  7. Yan JD, Fang MTC, Hall W (1999) The development of PC based CAD tools for auto-expansion circuit breaker design. IEEE Trans Power Deliv 14:176–181

    Article  Google Scholar 

  8. Nielsen T, Kaddani A, Zahrai S (2001) Modelling evaporating metal droplets in ablation controlled electric arcs. J Phys D Appl Phys 34:2022–2031

    Article  CAS  Google Scholar 

  9. Telfer DJ, Humphries J, Spencer JW, Jones GR (2002) Influence of PTFE on arc quenching in an experimental self-pressurized circuit breaker. In: XIV-th int. conf. gas discharges and their applications, Liverpool, UK, vol 1, pp 91–94

  10. Zhang JL, Yan JD, Fang MTC (2002) Prediction of arc behaviour during the current zero period in an auto-expansion circuit breaker. In: XIV-th int. conf. gas discharges and their applications, Liverpool, UK, vol 1, pp 131–134

  11. Luders C, Suwanasri T, Dommerque R (2006) Investigation of an SF\(_6\)-selfblast circuit breaker. J Phys D Appl Phys 39:666–672

    Article  Google Scholar 

  12. Seeger M (2006) An integral arc model for ablation controlled arcs based on CFD simulations. J Phys D Appl Phys 39:2180–2191

    Article  CAS  Google Scholar 

  13. Seeger M, Tepper J, Christen T, Abrahamson J (2006) Experimental study on PTFE ablation in high-voltage circuit-breakers. J Phys D Appl Phys 39:5016–5024

    Article  CAS  Google Scholar 

  14. Kozakov R, Kettlitz M, Weltmann K-D, Steffens A, Franck CM (2007) Temperature profiles of an ablation controlled arc in PTFE: I. Spectroscopic measurements. J Phys D Appl Phys 40:2499–2506

    Article  CAS  Google Scholar 

  15. Gonzalez J, Freton P, Reichert F, Randrianarivao D (2012) Turbulence and magnetic field calculations in high-voltage circuit breakers. IEEE Trans Plasma Sci 40:936–945

    Article  Google Scholar 

  16. Eichhoff D, Kurz A, Kozakov R, Gott G, Uhrlandt D, Schnettler A (2012) Study of an ablation-dominated arc in a model circuit breaker. J Phys D Appl Phys 45:305204

    Article  Google Scholar 

  17. Panousis E, Bujotzek M, Christen T (2014) Arc cooling mechanisms in a model circuit breaker. IEEE Trans Power Deliv 29:1806–1813

    Article  Google Scholar 

  18. Gonzalez J, Pierre F, Reichert F, Petchenka A (2015) PTFE vapor contribution to pressure changes in high-voltage circuit breakers. IEEE Trans Plasma Sci 43:2703–2714

    Article  CAS  Google Scholar 

  19. Petchenka A, Reichert F, Gonzalez J, Pierre F (2016) Modelling of the deformation of PTFE-nozzles in a high voltage circuit breaker due to multiple interruptions. J Phys D Appl Phys 49:135201

    Article  Google Scholar 

  20. Becerra M, Pettersson J, Franke S, Gortschakow S (2019) Temperature and pressure profiles of an ablation-controlled arc plasma in air. J Phys D Appl Phys 52:434003

    Article  CAS  Google Scholar 

  21. Kobayashi H, Usui T, Sakuyama T, Kotsuji H, Shiraishi K, Urai H (2019) Optical emission spectroscopy in self-blast gas circuit breaker at large current condition. IEEE Trans Plasma Sci 47:5064–5069

    Article  CAS  Google Scholar 

  22. Seeger M, Smeets R, Yan J, Ito H, Claessens M, Dullni E, Falkingham L, Franck C, Gentil F, Hartmann W (2017) Recent trends in development of high voltage circuit breakers with SF6 alternative gases. In: , XXII Symp, Physics of switching arc (FSO), Prague, Czech Republic

  23. Zhang B, Xiong J, Chen L, Li X, Murphy AB (2020) Fundamental physicochemical properties of SF6-alternative gases: a review of recent progress. J Phys D Appl Phys 53:173001

    Article  CAS  Google Scholar 

  24. CIGRE Working Group B3.45 (2020) Application of non-SF6 gases or gas-mixtures in medium and high voltage gas-insulated switchgear. CIGRE Technical Brochure, no. 802. CIGRE, Paris, France

  25. Uchii T, Hoshina Y, Miyazaki K, Mori T, Kawano H, Nakamoto T, Hirano Y (2004) Development of 72-kV class environmentally benign CO\({_2}\) gas circuit breaker model. Trans IEEJ 124-PE:476–484 (in Japanese)

  26. Uchii T, Shinkai T, Suzuki K (2002) Thermal interruption capability of carbon dioxide in a puffer-type circuit breaker utilizing polymer ablation. In: IEEE/PES transmission and distribution conf. and exhibition Asia Pacific, Yokohama, Japan, p 1750

  27. Tehlar D, Diggelmann T, Muller P, Buehler R, Ranjan N, Doiron C (2015) Ketone based alternative insulation medium in a 170 kV pilot installation. In: CIGRE colloquium, Nagoya, Japan

  28. Kieffel Y, Irwin T, Ponchon P, Owens J (2016) Green gas to replace SF6 in electrical grids. IEEE Power Energy Mag 14:32

    Article  Google Scholar 

  29. Mantilla J, Claessens M, Kriegel M (2016) Environmentally friendly perfluoroketones-based mixture as switching medium in high voltage circuit breakers. In: CIGRE 2016, Paris, France

  30. Saeedifard M, Graovac M, Dias R F, Iravani R (2010) DC power systems: challenges and opportunities. In: IEEE PES General Meeting. Minneapolis, USA, pp 1–7

  31. Pugliese H, von Kannewurff M (2013) Discovering DC: a primer on dc circuit breakers, their advantages, and design. IEEE Ind Appl Mag 19:22–28

    Article  Google Scholar 

  32. Dragicevic T, Vasquez JC, Guerrero JM, Skrlec D (2014) Advanced LVDC electrical power architectures and microgrids: a step toward a new generation of power distribution networks. IEEE Electrif Mag 2:54–65

    Article  Google Scholar 

  33. Tsukima M, Mitsuhashi T, Takahashi M, Fushimi M, Hosogai S, Yamagata S (2002) Low—voltage circuit breaker using auto-puffer interruption technique. Trans IEEJ 122-PE:969–975 (in Japanese)

  34. Ma Q, Rong M, Murphy AB, Wu Y, Xu T (2009) Simulation study of the influence of wall ablation on arc behavior in a low-voltage circuit breaker. IEEE Trans Plasma Sci 37:261–269

    Article  Google Scholar 

  35. Ranade MS, Kale A, Singh AK (2013) A three dimensional CFD analysis to investigate the effect of ablative materials and venting arrangement on arc characteristics in low voltage circuit breakers. In: IEEE 59th Holm conference on electrical contacts, Holm, 2013, pp 1–9

  36. Taxt H, Niayesh K, Runde M (2019) Self-blast current interruption and adaption to medium-voltage load current switching. IEEE Trans Power Deliv 34:2204–2210

    Article  Google Scholar 

  37. Tanaka Y, Sakuta T (2002) Investigation of plasma-quenching efficiency of various gases using induction thermal plasma technique: effect of various gas injection on Ar thermal ICP. JPD 35:2149–2158

    Article  CAS  Google Scholar 

  38. Wang C, Tanaka Y, Sakuta T (2004) Modeling of Ar induction thermal plasma with an injection of PTFE powder. Trans IEEJ 124-PE:440–446

  39. Tanaka Y, Numada T, Kaneko S, Okabe S (2005) Thermodynamic and transport properties of polymer ablated vapors and influence of their inclusions on Ar induction thermal plasma temperature. JSME Int J Ser B 48:417–424

    Article  CAS  Google Scholar 

  40. Tanaka Y, Numada T, Uesugi Y, Kaneko S, Okabe S (2005) Influence of polymer vapor concentration on temperature of Ar induction thermal plasmas during polymer solid powder injections. Trans. IEEJ 125-PE:1077–1083

  41. Takeuchi Y, Tanaka Y, Uesugi Y, Kaneko S, Okabe S (2007) Numerical simulation of thermal interaction between polymer and Ar induction thermal plasma. Trans. IEEJ 127-PE:739–746

  42. Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley, Hoboken, NJ, p 30

    Book  Google Scholar 

  43. Koffman LD, Plesset MS, Lees Lester (1984) Theory of evaporation and condensation. Phys Fluids 27:876

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Sakuyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Particle composition of polymer vapour

Appendix: Particle composition of polymer vapour

See Appendix Figs. 29, 30, 31 and 32.

Fig. 29
figure 29

Particle composition of PTFE vapour

Fig. 30
figure 30

Particle composition of PE vapour

Fig. 31
figure 31

Particle composition of POM vapour

Fig. 32
figure 32

Particle composition of PA66 vapour

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakuyama, T., Tanaka, Y. Study of Ablation Phenomena of Polymer Bulk Irradiated by Thermal Plasmas Using Induction Thermal Plasma Technique. Plasma Chem Plasma Process 42, 1015–1043 (2022). https://doi.org/10.1007/s11090-022-10271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10271-1

Keywords

Navigation