Skip to main content
Log in

Preparation of Water-Repellent Film on a Plastic Plate by Unbalanced Radio-Frequency Magnetron Plasma Sputtering Using PTFE Target for a Next-Generation Automobile Window

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A plastic plate made of polycarbonate (PC) was functionalized as a water-repellent nature by unbalanced radio-frequency(rf) magnetron plasma sputtering using polytetrafluoroethylene target. In order to build the unbalanced rf magnetron plasma, 3D magnetic field analysis is simulated at three setups using ferrite, samarium cobalt and neodymium magnets so that the combination of ferrite and neodymium magnets is selected. A thin film is prepared on the PC plate at argon gas pressures of 2 and 50 Pa and rf input powers of 50, 100, 150 and 200 W. The functionalized PC surface has resulted in hydrophobic nature, that is, a water contact angle is higher than 90 degree, at all experimental conditions. It is found that the water contact angle is independent with rf power at approximately 108 degree at low pressure of 2 Pa, whereas it gradually increases with increasing rf power from 104 to 112 degree at high pressure of 50 Pa. These surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) analysis. The ratio of F 1 s component to all components of C 1 s, O 1 s and F 1 s from XPS spectra for 2 Pa was higher than that for 50 Pa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ohtsu Y, Takada Y, Sugawara K, Fujio Y, Tabaru T (2019) Jpn J Appl Phys 58:SEED03-1–6

    Article  Google Scholar 

  2. Jafari R, Asadollahi S, Farzaneh M (2013) Plasma Chem Plasma Process 33:177–200

    Article  CAS  Google Scholar 

  3. Young T (1805) Phil Trans R Soc Lond 95:609–612

    Google Scholar 

  4. Takahashi T, Hirano Y, Takasawa Y, Gowa T, Fukutake N, Oshima A, Tagawa S, Washio M (2011) Radiat Phys Chem 80(2):253–256

    Article  CAS  Google Scholar 

  5. Han Y, Manolach SO, Denes F, Rowell RM (2011) Carbohydr Polym 86(2):1031–1037

    Article  CAS  Google Scholar 

  6. Cortese B, Morgan H (2012) Langmuir 28(1):896–904

    Article  CAS  Google Scholar 

  7. Milella A, Di Mundo R, Palumbo F, Favia P, Fracassi F, D’Agostino R (2009) Plasma Process Polym 6(6–7):460–466

    Article  CAS  Google Scholar 

  8. Grill A (1994) Cold plasma in materials fabrication: from fundamentals to applications. IEEE Press, New York

    Book  Google Scholar 

  9. Yasuda H (1985) Plasma polymerization. Academic Press, London, p 96

    Google Scholar 

  10. Hegemann D, Hossain MM, Korner E, Balazs DJ (2007) Plasma Process Polym 4(3):229–238

    Article  CAS  Google Scholar 

  11. Teare DOH, Spanos CG, Ridley P, Kinmond EJ, Roucoules V, Badyal JPS, Sa B, Coulson S, Willis C (2002) Chem Mater 14(11):4566–4571

    Article  CAS  Google Scholar 

  12. Ohtsu Y, Yamagami N, Fujita H (2007) Jpn J Appl Phys 46(27):L679–L681

    Article  CAS  Google Scholar 

  13. Ohtsu Y, Masuda Y, Yazaki S, Misawa T, Fujita H (2008) Sur Coat Technol 202:5367–5369

    Article  CAS  Google Scholar 

  14. Chattopadhyay R (2004) Advanced thermally assisted surface engineering processes. Kluwer, Dordrecht

    Google Scholar 

  15. Qi HJU, Fu YB, Wang D, Yang XX, Sui KY, Ma ZL (2000) Surf Coat Technol 131(1–3):177–180

    Article  CAS  Google Scholar 

  16. Jaszewski R, Schifta H, Schnydera B, Schneuwlyb A, Groningb P (1999) Appl Surf Sci 143(1–4):301–308

    Article  CAS  Google Scholar 

  17. Ma Golub, Wydeven T, Johnson AL (1998) Langmuir 14(8):2217–2220

    Article  Google Scholar 

  18. Biederman H, Zeuner M, Zalman J, Blkova P (2001) Thin Solid Films 392(2):208–213

    Article  CAS  Google Scholar 

  19. Ryan ME, Fonseca LC, Tasker S, Badyal JPS (1995) J Phys Chem 99(18):7060–7064

    Article  CAS  Google Scholar 

  20. Drabik M, Polonskyi O, Kylian O, Cechvala J, Artemenko A, Gordeev I, Choukourov A, Slav D (2010) Plasma Process 7(7):544–551

    Article  CAS  Google Scholar 

  21. Coulson SR, Woodward IS, Badyal JPS, Sa B, Willis C (2000) Langmuir 16(15):6287–6293

    Article  CAS  Google Scholar 

  22. Teshima K, Sugimura H, Inoue Y, Takai O, Takano A (2003) Langmuir 19(25):10624–10627

    Article  CAS  Google Scholar 

  23. Teshima K, Sugimura H, Inoue Y, Takai O, Takano A (2004) Chem Vapor Depos 10(6):295–297

    Article  CAS  Google Scholar 

  24. Khoddami A, Avinc O, Mallakpour S (2010) Prog Org Coat 67:311–316

    Article  CAS  Google Scholar 

  25. Leroux F, Campagne C, Perwuelz A, Gengembre L (2008) Appl Surf Sci 254(13):3902–3908

    Article  CAS  Google Scholar 

  26. Davis R, El-Shafei A, Hauser P (2011) Surf Coat Technol 205(20):4791–4797

    Article  CAS  Google Scholar 

  27. Vandencasteele N, Reniers F (2010) J Electron Spectrosc Relat Phenom 178–179:394–408

    Article  Google Scholar 

  28. Montarsolo A, Periolatto M, Zerbola M, Mossotti R, Ferrero F (2013) Textile Res J 83(11):1190–1200

    Article  Google Scholar 

  29. Kiuru M, Alakoski E (2004) Mater Lett 58(16):2213–2216

    Article  CAS  Google Scholar 

  30. Doms M, Feindt H, Kuipers WJ, Shewtanasoontorn D, Matar AS, Brinkhues S, Welton RH, Mueller J (2008) J Micromechan Microengin 18(5):055030

    Article  Google Scholar 

  31. Zuber K, Murphy P, Evans D (2015) Adv Eng Mater 17(4):474–482

    Article  CAS  Google Scholar 

  32. Kezuka K, Uemura A, Iwamori S (2008) J Vac Soc Jpn 51(3):201–208

    Article  CAS  Google Scholar 

  33. Musil J (1998) Vacuum 50(3–4):363–372

    Article  CAS  Google Scholar 

  34. Haq A, Boyd A, Acheson J, McLaughlin J, Meenan B (2019) Surf Coat Technol 362:185–190

    Article  Google Scholar 

  35. Cordeiro AL, Nitschke M, Janke A, Helbig R, Dsouza F, Donnelly GT, Willemsen PR, Werner C (2009) Express Polym Lett 3(2):70–83

    Article  CAS  Google Scholar 

  36. Kang SM, Yoon SG, Yoon DH (2008) Thin Solid Films 516(7):1405–1413

    Article  CAS  Google Scholar 

  37. Zhu XL, Liu SB, Man BY, Xie CQ, Liu M (2007) Appl Surf Sci 253(6):3122–3126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by JKA and its promotion funds from AUTORACE, JSPS KAKENHI Grant Numbers JP19K03784 and Joint Research of Ocean Energy from Institute of Ocean Energy, Saga University. The authors would like to thank RENIAS Co. Ltd for the gratuitous offer of the polycarbonate plates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Ohtsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 17 kb)

Supplementary file2 (PDF 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohtsu, Y., Ino, Y., Fujio, Y. et al. Preparation of Water-Repellent Film on a Plastic Plate by Unbalanced Radio-Frequency Magnetron Plasma Sputtering Using PTFE Target for a Next-Generation Automobile Window. Plasma Chem Plasma Process 41, 1631–1646 (2021). https://doi.org/10.1007/s11090-021-10204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10204-4

Keywords

Navigation