Skip to main content
Log in

Impact of Short Time Atmospheric Plasma Treatment on Onion Seeds

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The paper presents the results of an experiment on the effect of cold plasma (He + O2 and He + Air) generated in a radio frequency cold atmospheric plasma jet on the process of germination of onion cv. Wolska (Allium cepa L.) seeds. In order to determine the impact of the gas flow on the seed surface, CFD simulations and Schlieren imaging were performed and surface characteristics were studied using a digital microscope. Plasma treatment of the seeds was carried out four times (2, 5, 10 and 15 s) with one control group. Pre-sowing plasma stimulation of seeds improved the germination capacity and germination energy for all tested groups in comparison to the control. The best germination capacity and energy were obtained for seeds stimulated with 10 s of plasma treatment. Analysis of the data showed a statistically significant impact of plasma treatment on the onion seed’s germination parameters. Plasma treatment did not induce significant changes on the seed surface, as microscope images showed but length of all plasma-treated seedlings increased in comparison to control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

All data generated or analysed during this study are included in this published article.

References

  1. Zahoranová A, Henselová M, Hudecová D et al (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414. https://doi.org/10.1007/s11090-015-9684-z

    Article  CAS  Google Scholar 

  2. Kovalová Z, Tarabová K, Hensel K, MacHala Z (2013) Decontamination of streptococci biofilms and Bacillus cereus spores on plastic surfaces with DC and pulsed corona discharges. EPJ Appl Phys. https://doi.org/10.1051/epjap/2012120449

    Article  Google Scholar 

  3. Neretti G, Tampieri F, Borghi CA et al (2018) Characterization of a plasma source for biomedical applications by electrical, optical, and chemical measurements. Plasma Processes Polym 15:1800105. https://doi.org/10.1002/ppap.201800105

    Article  CAS  Google Scholar 

  4. Lu X, Naidis GV, Laroussi M et al (2016) Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep 630:1–84. https://doi.org/10.1016/j.physrep.2016.03.003

    Article  CAS  Google Scholar 

  5. von Woedtke Th, Reuter S, Masur K, Weltmann K-D (2013) Plasmas for medicine. Phys Rep 530:291–320. https://doi.org/10.1016/j.physrep.2013.05.005

    Article  CAS  Google Scholar 

  6. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36:143–206. https://doi.org/10.1016/S0927-796X(02)00004-9

    Article  Google Scholar 

  7. Puač N, Živković S, Selaković N et al (2014) Long and short term effects of plasma treatment on meristematic plant cells. Appl Phys Lett 104:214106. https://doi.org/10.1063/1.4880360

    Article  CAS  Google Scholar 

  8. Puač N, Petrović ZL, Malović G et al (2006) Measurements of voltage–current characteristics of a plasma needle and its effect on plant cells. J Phys D Appl Phys 39:3514–3519. https://doi.org/10.1088/0022-3727/39/16/S09

    Article  CAS  Google Scholar 

  9. Hensel K, Kučerová K, Tarabová B et al (2015) Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules. Biointerphases 10:029515. https://doi.org/10.1116/1.4919559

    Article  CAS  PubMed  Google Scholar 

  10. Ji S-H, Choi K-H, Pengkit A et al (2016) Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Arch Biochem Biophys 605:117–128. https://doi.org/10.1016/j.abb.2016.02.028

    Article  CAS  PubMed  Google Scholar 

  11. Hayashi N, Ono R, Shiratani M, Yonesu A (2015) Antioxidative activity and growth regulation of Brassicaceae induced by oxygen radical irradiation. Jpn J Appl Phys 54:06GD01. https://doi.org/10.7567/JJAP.54.06GD01

    Article  CAS  Google Scholar 

  12. Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67:490–497. https://doi.org/10.2478/s11756-012-0046-5

    Article  CAS  Google Scholar 

  13. Nakano R, Tashiro K, Aijima R, Hayashi N (2016) Effect of oxygen plasma irradiation on gene expression in plant seeds induced by active oxygen species. PMED. https://doi.org/10.1615/PlasmaMed.2016019093

    Article  Google Scholar 

  14. Kitazaki S, Sarinont T, Koga K et al (2014) Plasma induced long-term growth enhancement of Raphanus sativus L. using combinatorial atmospheric air dielectric barrier discharge plasmas. Curr Appl Phys 14:S149–S153. https://doi.org/10.1016/j.cap.2013.11.056

    Article  Google Scholar 

  15. Ling L, Jiafeng J, Jiangang L et al (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859. https://doi.org/10.1038/srep05859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pawłat J, Starek A, Sujak A et al (2018) Effects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L. seeds’ germination. PLoS ONE 13:e0194349. https://doi.org/10.1371/journal.pone.0194349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim J-W, Puligundla P, Mok C (2016) Effect of corona discharge plasma jet on surface-borne microorganisms and sprouting of broccoli seeds. J Sci Food Agric 97:128–134. https://doi.org/10.1002/jsfa.7698

    Article  CAS  PubMed  Google Scholar 

  18. Butscher D, Van Loon H, Waskow A et al (2016) Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int J Food Microbiol 238:222–232. https://doi.org/10.1016/j.ijfoodmicro.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  19. Schnabel U, Niquet R, Krohmann U et al (2011) Decontamination of microbiologically contaminated specimen by direct and indirect plasma treatment. Plasma Processes Polym 9:569–575. https://doi.org/10.1002/ppap.201100088

    Article  CAS  Google Scholar 

  20. Pawłat J, Starek A, Sujak A et al (2018) Effects of atmospheric pressure plasma generated in GlidArc reactor on Lavatera thuringiaca L. seeds’ germination. Plasma Process Polym 15:1700064. https://doi.org/10.1002/ppap.201700064

    Article  CAS  Google Scholar 

  21. Bafoil M, Jemmat A, Martinez Y et al (2018) Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS ONE 13:e0195512. https://doi.org/10.1371/journal.pone.0195512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kopacki M, Pawłat J, Terebun P, et al (2017) Efficacy of non-thermal plasma fumigation to control fungi occurring on onion seeds. In: 2017 international conference on electromagnetic devices and processes in environment protection with seminar applications of superconductors (ELMECO AoS), pp 1–4

  23. Logothetis DK, Papadopoulos PK, Svarnas P, Vafeas P (2016) Numerical simulation of the interaction between helium jet flow and an atmospheric-pressure “plasma jet”. Comput Fluids 140:11–18. https://doi.org/10.1016/j.compfluid.2016.09.006

    Article  CAS  Google Scholar 

  24. Miyagawa Y, Tanaka M, Ikeyama M et al (2006) Analysis of plasma and neutral gas flow inside of a PET bottle under PIII condition by particle-in-cell/Monte Carlo simulation. Nucl Instrum Methods Phys Res, Sect B 242:341–345. https://doi.org/10.1016/j.nimb.2005.08.049

    Article  CAS  Google Scholar 

  25. Yin F, Hu S, Yu C, Li L (2007) Computational simulation for the constricted flow of argon plasma arc. Comput Mater Sci 40:389–394. https://doi.org/10.1016/j.commatsci.2007.01.008

    Article  CAS  Google Scholar 

  26. Verlackt CCW, Boxem WV, Bogaerts A (2018) Transport and accumulation of plasma generated species in aqueous solution. Phys Chem Chem Phys 20:6845–6859. https://doi.org/10.1039/C7CP07593F

    Article  CAS  PubMed  Google Scholar 

  27. Sakiyama Y, Graves DB (2009) Neutral gas flow and ring-shaped emission profile in non-thermal RF-excited plasma needle discharge at atmospheric pressure. Plasma Sources Sci Technol 18:025022. https://doi.org/10.1088/0963-0252/18/2/025022

    Article  CAS  Google Scholar 

  28. Schmidt-Bleker A, Reuter S, Weltmann K-D (2015) Quantitative schlieren diagnostics for the determination of ambient species density, gas temperature and calorimetric power of cold atmospheric plasma jets. J Phys D Appl Phys 48:175202. https://doi.org/10.1088/0022-3727/48/17/175202

    Article  CAS  Google Scholar 

  29. Traldi E, Boselli M, Simoncelli E et al (2018) Schlieren imaging: a powerful tool for atmospheric plasma diagnostic. EPJ Techn Instrum 5:4. https://doi.org/10.1140/epjti/s40485-018-0045-1

    Article  Google Scholar 

  30. Darny T, Pouvesle J-M, Fontane J et al (2017) Plasma action on helium flow in cold atmospheric pressure plasma jet experiments. Plasma Sources Sci Technol 26:105001. https://doi.org/10.1088/1361-6595/aa8877

    Article  CAS  Google Scholar 

  31. Pei X, Ghasemi M, Xu H et al (2016) Dynamics of the gas flow turbulent front in atmospheric pressure plasma jets. Plasma Sources Sci Technol 25:035013. https://doi.org/10.1088/0963-0252/25/3/035013

    Article  CAS  Google Scholar 

  32. Kelly S, Golda J, Turner MM, der Gathen VS (2015) Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet. J Phys D Appl Phys 48:444002. https://doi.org/10.1088/0022-3727/48/44/444002

    Article  CAS  Google Scholar 

  33. Boselli M, Colombo V, Ghedini E et al (2014) Schlieren high-speed imaging of a nanosecond pulsed atmospheric pressure non-equilibrium plasma jet. Plasma Chem Plasma Process 34:853–869. https://doi.org/10.1007/s11090-014-9537-1

    Article  CAS  Google Scholar 

  34. (2018) FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Accessed 11 Nov 2019

  35. (2017) International Rules for Seed Testing. International Seed Testing Association

  36. Dasan BG, Onal-Ulusoy B, Pawłat J et al (2017) A new and simple approach for decontamination of food contact surfaces with gliding arc discharge atmospheric non-thermal plasma. Food Bioprocess Technol 10:650–661. https://doi.org/10.1007/s11947-016-1847-2

    Article  CAS  Google Scholar 

  37. Machala Z, Tarabova B, Hensel K et al (2013) Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Processes Polym 10:649–659. https://doi.org/10.1002/ppap.201200113

    Article  CAS  Google Scholar 

  38. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:741. https://doi.org/10.1038/srep00741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Randeniya LK, de Groot GJJB (2015) Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. Plasma Process Polym 12:608–623. https://doi.org/10.1002/ppap.201500042

    Article  CAS  Google Scholar 

  40. Yodpitak S, Mahatheeranont S, Boonyawan D et al (2019) Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chem 289:328–339. https://doi.org/10.1016/j.foodchem.2019.03.061

    Article  CAS  PubMed  Google Scholar 

  41. Babajani A, Iranbakhsh A, Oraghi Ardebili Z, Eslami B (2019) Seed priming with non-thermal plasma modified plant reactions to selenium or zinc oxide nanoparticles: cold plasma as a novel emerging tool for plant science. Plasma Chem Plasma Process 39:21–34. https://doi.org/10.1007/s11090-018-9934-y

    Article  CAS  Google Scholar 

  42. Meng Y, Qu G, Wang T et al (2017) Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem Plasma Process 37:1105–1119. https://doi.org/10.1007/s11090-017-9799-5

    Article  CAS  Google Scholar 

Download references

Funding

Information that explains whether and by whom the research was supported. This study was supported by LUT research fund, Polish-Slovak Bilateral Cooperation Programme (PlasmaBioAgro) PPN/BIL/2018/1/00065 + SK-PL-18-0090, NCN-M-Era.Net2, project no. UMO-2016/22/Z/ST8/00694- PNANO4BONE, KONNECT project, COST Action PlAgri CA19110 and CEEPUS CIII-AT-0063.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Agnieszka Starek or Joanna Pawłat.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Ethics Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terebun, P., Kwiatkowski, M., Starek, A. et al. Impact of Short Time Atmospheric Plasma Treatment on Onion Seeds. Plasma Chem Plasma Process 41, 559–571 (2021). https://doi.org/10.1007/s11090-020-10146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10146-3

Keywords

Navigation