Skip to main content
Log in

A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, a gliding arc discharge (GAD) microplasma system was designed, and its decontamination effect was investigated on stainless steel (SS), silicone (Si), and polyethylene terephthalate (PET) surfaces artificially contaminated with 8.15 ± 0.28 log cfu/mL of Escherichia coli and 6.18 ± 0.21 log cfu/mL of Staphylococcus epidermidis. Each of the contaminated surfaces was treated with high purity air (79% nitrogen and 21% oxygen) or nitrogen plasmas for 1–10 min at varying rates of gas flow. Significant reductions of 3.76 ± 0.28, 3.19 ± 0.31, and 2.95 ± 0.94 log cfu/mL in S. epidermidis, and 2.72 ± 0.82, 4.43 ± 0.14, and 3.18 ± 0.96 log cfu/mL in E. coli on SS, Si, and PET surfaces, respectively, were achieved after 5 min of plasma treatment by using nitrogen as the plasma forming gas (p < 0.05). The temperature changes of each surface during plasma generation were lower than 35 °C and were not affected by the type of plasma forming gas. Additionally, morphological changes in the structure of E. coli and S. epidermidis after GAD plasma treatments were demonstrated using scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramzon, N., Joaquin, J. C., Bray, J., & Brelles-Marino, G. (2006). Biofilm destruction by RF high-pressure cold plasma jet. IEEE Transactions on Plasma Science, 34(4), 1304–1309.

    Article  CAS  Google Scholar 

  • Akdogan, E., & Mutlu, M. (2012). Generation of amphoteric surfaces via glow-discharge technique with single precursor and the behavior of bovine serum albumin at the surface. Colloids and Surfaces B-Biointerfaces, 89, 289–294.

    Article  CAS  Google Scholar 

  • Atlas, R. M. (1995). Principles of microbiology. St. Louis: Mosby-Year Book, Inc.

    Google Scholar 

  • Bayliss, D. L., Walsh, J. L., Iza, F., Shama, G., Holah, J., & Kong, M. G. (2012). Complex responses of microorganisms as a community to a flowing atmospheric plasma. Plasma Processes and Polymers, 9(6), 597–611.

    Article  CAS  Google Scholar 

  • Biederman, H., Boyaci, I. H., Bilkova, P., Slavinska, D., Mutlu, S., Zemek, J., et al. (2001). Characterization of glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies. Journal of Applied Polymer Science, 81(6), 1341–1352.

    Article  CAS  Google Scholar 

  • Boudam, M. K., Moisan, M., Saoudi, B., Popovici, C., Gherardi, N., & Massines, F. (2006). Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. Journal of Physics D-Applied Physics, 39(16), 3494–3507.

    Article  CAS  Google Scholar 

  • Burlica, R., Grim, R. G., Shih, K. Y., Balkwill, D., & Locke, B. R. (2010). Bacteria inactivation using low power pulsed gliding arc discharges with water spray. Plasma Processes and Polymers, 7(8), 640–649.

    Article  CAS  Google Scholar 

  • Cokeliler, D., Caner, H., Zemek, J., Choukourov, A., Biederman, H., & Mutlu, M. (2007). A plasma polymerization technique to overcome cerebrospinal fluid shunt infections. Biomedical Materials, 2(1), 39–47.

    Article  CAS  Google Scholar 

  • Dasan, B. G., Boyaci, I. H., & Mutlu, M. (2016a). Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control, 70, 1–8.

    Article  CAS  Google Scholar 

  • Dasan, B. G., Mutlu, M., & Boyaci, I. H. (2016b). Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. International Journal of Food Microbiology, 216, 50–59.

    Article  CAS  Google Scholar 

  • Diatczyk, J., Komarzyniec, G., & Stryczewska, H. D. (2011). Power consumption of gliding arc discharge plasma reactor. International journal of Environmental Science and Technology, 5, 12–16.

    Google Scholar 

  • Fernandez, A., & Thompson, A. (2012). The inactivation of Salmonella by cold atmospheric plasma treatment. Food Research International, 45(2), 678–684.

    Article  Google Scholar 

  • Fridman, A. (2008). Plasma biology and plasma medicine. In Plasma chemistry (pp. 848–913): Cambrigde University Press.

  • Graves, D. B. (2012). The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D-Applied Physics, 45(26). doi:10.1088/0022-3727/45/26/263001.

  • Gunaydin, B., Sir, N., Kavlak, S., Guner, A., & Mutlu, M. (2010). A new approach for the electrochemical detection of phenolic compounds. Part I: modification of graphite surface by plasma polymerization technique and characterization by Raman spectroscopy. Food and Bioprocess Technology, 3(3), 473–479.

    Article  Google Scholar 

  • Guven, B., Basaran-Akgul, N., Temur, E., Tamer, U., & Boyaci, I. H. (2011). SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst, 136(4), 740–748.

    Article  CAS  Google Scholar 

  • Hertwig, C., Reineke, K., Ehlbeck, J., Knorr, D., & Schlüter, O. (2015). Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control, 55, 221–229.

    Article  CAS  Google Scholar 

  • Hury, S., Vidal, D. R., Desor, F., Pelletier, J., & Lagarde, T. (1998). A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen-based plasmas. Letters in Applied Microbiology, 26(6), 417–421.

    Article  CAS  Google Scholar 

  • Ibis, F., Oflaz, H., & Ercan, U. K. (2016). Biofilm inactivation and prevention on common implant material surfaces by non-thermal DBD plasma treatment. Plasma Medicine, 6(1), 33–45.

  • Kamgang-Youbi, G., Herry, J. M., Meylheuc, T., Brisset, J. L., Bellon-Fontaine, M. N., Doubla, A., et al. (2009). Microbial inactivation using plasma-activated water obtained by gliding electric discharges (vol 48, pg 13, 2009). Letters in Applied Microbiology, 49(2), 292–292.

    Article  Google Scholar 

  • Komarzyniec, G., Diatczyk, J., & Stryczewska, H. D. (2006). Arc plasma reactor power system with 5-limb transformer. Journal of Advanced Oxidation Technologies, 9(2), 178–181.

    Article  Google Scholar 

  • Korachi, M., & Aslan, N. (2013). Low temperature atmospheric plasma for microbial decontamination. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: science, technology and education (Vol. 1, pp. 453–459). Badajoz: Formatex.

  • Laroussi, M. (2002). Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Transactions on Plasma Science, 30(4), 1409–1415.

    Article  CAS  Google Scholar 

  • Laroussi, M., & Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233(1–3), 81–86.

    Article  CAS  Google Scholar 

  • Laroussi, M., Mendis, D. A., & Rosenberg, M. (2003). Plasma interaction with microbes. New Journal of Physics, 5, 1–41.

    Article  Google Scholar 

  • Laroussi, M., Richardson, J. P., & Dobbs, F. C. Biochemical pathways in the interaction of non-equilibrium plasmas with bacteria. In Proc. Electromed, Portsmouth, VA, 2001 (pp. 33–34.)

  • Laroussi, M., Sayler, G. S., Glascock, B. B., McCurdy, B., Pearce, M. E., Bright, N. G., et al. (1999). Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure. IEEE Transactions on Plasma Science, 27(1), 34–35.

    Article  Google Scholar 

  • Ma, Y., Zhang, G. J., Shi, X. M., Xu, G. M., & Yang, Y. (2008). Chemical mechanisms of bacterial inactivation using dielectric barrier discharge plasma in atmospheric air. IEEE Transactions on Plasma Science, 36(4), 1615–1620.

    Article  CAS  Google Scholar 

  • Mai-Prochnow, A., Murphy, A. B., McLean, K. M., Kong, M. G., & Ostrikov, K. (2014). Atmospheric pressure plasmas: infection control and bacterial responses. International Journal of Antimicrobial Agents, 43(6), 508–517.

    Article  CAS  Google Scholar 

  • Menashi, W. P. (1968). Treatment of surfaces. US.

  • Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3(3–4), 159–170.

    Article  Google Scholar 

  • Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & Saoudi, B. (2002). Plasma sterilization. Methods mechanisms. Pure and Applied Chemistry, 74(3), 349–358.

    Article  CAS  Google Scholar 

  • Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., & Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226(1–2), 1–21.

    Article  CAS  Google Scholar 

  • Montie, T. C., Kelly-Wintenberg, K., & Roth, J. R. (2000). An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Transactions on Plasma Science, 28(1), 41–50.

    Article  Google Scholar 

  • Moreau, M., Feuilloley, M. G. J., Orange, N., & Brisset, J. L. (2005). Lethal effect of the gliding arc discharges on Erwinia spp. Journal of Applied Microbiology, 98(5), 1039–1046.

    Article  CAS  Google Scholar 

  • Moreau, M., Feuilloley, M. G. J., Veron, W., Meylheuc, T., Chevalier, S., Brisset, J. L., et al. (2007). Gliding arc discharge in the potato pathogen Erwinia carotovora subsp atroseptica: mechanism of lethal action and effect on membrane-associated molecules. Applied and Environmental Microbiology, 73(18), 5904–5910.

    Article  CAS  Google Scholar 

  • Mutlu, M., Mutlu, S., Boyaci, I. H., Alp, B., & Piskin, E. (1998). High-linearity glucose enzyme electrodes for food industries: preparation by a plasma polymerization technique. Polymers in Sensors, 690, 57–65.

    Article  CAS  Google Scholar 

  • Nehra, V., Kumar, A., & Dwivedi, H. K. (2008). Atmospheric non-thermal plasma sources. International Journal of Engineering (IJE), 2(1), 53–68.

    Google Scholar 

  • Niemira, B. A., & Sites, J. (2008). Cold plasma inactivates Salmonella stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. Journal of Food Protection, 71(7), 1357–1365.

    Article  Google Scholar 

  • Pawlat, J. (2013). Atmospheric pressure plasma jet for decontamination purposes. European Physical Journal-Applied Physics, 61(2). doi:10.1051/Epjap/2012120431.

  • Pawlat, J., Samon, R., Stryczewska, H. D., Diatczyk, J., & Gizewski, T. (2013). RF-powered atmospheric pressure plasma jet for surface treatment. European Physical Journal-Applied Physics, 61(2). doi:10.1051/Epjap/2012120428.

  • Prysiazhnyi, V., Zaporojchenko, V., Kersten, H., & Cernak, M. (2012). Influence of humidity on atmospheric pressure air plasma treatment of aluminium surfaces. Applied Surface Science, 258(14), 5467–5471.

    Article  CAS  Google Scholar 

  • Rose, M. J., Aron, S. A., & Janicki, B. W. (1966). Effect of various nonionic surfactants on growth of Escherichia coli. Journal of Bacteriology, 91(5), 1863–1868.

    Google Scholar 

  • Schluter, O., Ehlbeck, J., Hertel, C., Habermeyer, M., Roth, A., Engel, K. H., et al. (2013). Opinion on the use of plasma processes for treatment of foods*. Molecular Nutrition & Food Research, 57(5), 920–927.

    Article  Google Scholar 

  • Schnabel, U., Niquet, R., Krohmann, U., Winter, J., Schlüter, O., Weltmann, K. D., et al. (2012). Decontamination of microbiologically contaminated specimen by direct and indirect plasma treatment. Plasma Processes and Polymers, 9(6), 569–575.

    Article  CAS  Google Scholar 

  • Sen, Y., Bagci, U., Gulec, H. A., & Mutlu, M. (2012). Modification of food-contacting surfaces by plasma polymerization technique: reducing the Biofouling of microorganisms on stainless steel surface. Food and Bioprocess Technology, 5(1), 166–175.

    Article  CAS  Google Scholar 

  • Sen, Y., & Mutlu, M. (2013). Sterilization of food contacting surfaces via non-thermal plasma treatment: a model study with Escherichia coli-contaminated stainless steel and polyethylene surfaces. Food and Bioprocess Technology, 6(12), 3295–3304.

    Article  CAS  Google Scholar 

  • Solon, J. G., & Killeen, S. (2015). Decontamination and sterilization. Surgery (Oxford), 33(11), 572–578.

    Article  Google Scholar 

  • Stryczewska, H. D., Diatczyk, J., & Pawlat, J. (2011). Temperature distribution in the gliding arc discharge chamber. Journal of Advanced Oxidation Technologies, 14(2), 276–281.

    Article  CAS  Google Scholar 

  • Stryczewska, H. D., Jakubowski, T., Kalisiak, S., Gizewski, T., & Pawlat, J. (2013). Power systems of plasma reactors for non-thermal plasma generation. Journal of Advanced Oxidation Technologies, 16(1), 52–62.

    Google Scholar 

  • Vitrac, H., Guespin-Michel J.F., Brisset J.L. A microbiological investigation of the gliding arc treatment of aqueous media. In Proc. 7th Int. Symp. on High Pressure Low Temperature Plasma Chemistry, HAKONE VII, Greifswald, Germany, 2000 (Vol. 2, pp. 393–397)

  • von Keudell, A., Awakowicz, P., Benedikt, J., Raballand, V., Yanguas-Gil, A., Opretzka, J., et al. (2010). Inactivation of bacteria and biomolecules by low-pressure plasma discharges. Plasma Processes and Polymers, 7(3–4), 327–352.

    Article  Google Scholar 

  • von Woedtke, T., Reuter, S., Masur, K., & Weltmann, K. D. (2013). Plasmas for medicine. Physics Reports-Review Section of Physics Letters, 530(4), 291–320.

    Google Scholar 

  • Yao, M., Mainelis, G., & An, H. R. (2005). Inactivation of microorganisms using electrostatic fields. Environmental Science & Technology, 39(9), 3338–3344.

    Article  CAS  Google Scholar 

  • Ziuzina, D., Han, L., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 210, 53–61.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project number: MAG 112M740), the Korean Scientific Cooperation Network, the European Research Area (KORANET) Joint Call on Green Technologies project: KORANET (ENV-BIO-GA), and COST Actions (MP1101 and TD1208) and LUT research fund.

We would like to thank Prof. H. Stryczewska for her kind guidance and management of the KORANET ENV-BIO-GA network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Mutlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasan, B.G., Onal-Ulusoy, B., Pawlat, J. et al. A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma. Food Bioprocess Technol 10, 650–661 (2017). https://doi.org/10.1007/s11947-016-1847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1847-2

Keywords

Navigation