Skip to main content

A Dielectric Barrier Discharge Plasma Degrades Proteins to Peptides by Cleaving the Peptide Bond

Abstract

Effects of atmospheric pressure plasmas on proteins are studied to assess the quality of plasma decontamination and to gain insights into plasma-triggered molecular events underlying observations made in plasma medicine on the cellular, organ, and systemic level. Atmospheric pressure plasma treatment has been reported to cause protein degradation. Degradation products, however, have not been characterized. Treating different model proteins in aqueous solution with a DBD plasma, we confirmed with different methods (Bradford assay, application of Lambert–Beer’s law on absorption measurements at 280 nm, ninhydrin assay, size exclusion chromatography, SDS-PAGE) that protein degradation takes place. Peptides of different sizes were detected by size exclusion chromatography. The ninhydrin assay indicated that peptide bonds are cleaved. In the presence of hydroxyl radical scavenger d-mannitol, the concentration of amino termini formed during the initial 10 min of plasma treatment was reduced by 96%, while at longer treatment times mannitol did no longer prevent the formation of amino termini, indicating that hydroxyl radicals play an important role in the initial cleaving of peptide bonds in the protein, but other mechanisms are at play in cleaving the peptide bonds in the resulting peptides. The generation of peptides has implications for plasma decontamination and plasma medicine. It is critical to verify that plasma decontamination processes do not result in protein fragments with undesired properties. In plasma medicine, plasma-generated protein fragments may act as molecular triggers in treated cells, tissues, or patients, e.g., regulating signaling cascades in a protease-like fashion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Sakiyama Y, Graves DB, Chang H-W et al (2012) Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J Phys D Appl Phys 45:425201. https://doi.org/10.1088/0022-3727/45/42/425201

    CAS  Article  Google Scholar 

  2. Haertel B, Woedtke TV, Weltmann K-D et al (2014) Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol Ther 22:477. https://doi.org/10.4062/biomolther.2014.105

    CAS  Article  Google Scholar 

  3. Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26:610. https://doi.org/10.1016/j.biotechadv.2008.08.001

    CAS  Article  PubMed  Google Scholar 

  4. Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym 2:391. https://doi.org/10.1002/ppap.200400078

    CAS  Article  Google Scholar 

  5. Julák J, Janoušková O, Scholtz V et al (2011) Inactivation of prions using electrical dc discharges at atmospheric pressure and ambient temperature. Plasma Process Polym 8:316. https://doi.org/10.1002/ppap.201000100

    CAS  Article  Google Scholar 

  6. Baxter HC, Campbell GA, Whittaker AG et al (2005) Elimination of transmissible spongiform encephalopathy infectivity and decontamination of surgical instruments by using radio-frequency gas-plasma treatment. J Gen Virol 86:2393. https://doi.org/10.1099/vir.0.81016-0

    CAS  Article  PubMed  Google Scholar 

  7. Lackmann J-W, Schneider S, Edengeiser E et al (2013) Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface 10:20130591. https://doi.org/10.1098/rsif.2013.0591

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Rauscher H, Stapelmann K, Kylián O et al (2009) Monitoring plasma etching of biomolecules by imaging ellipsometry. Vacuum 84:75. https://doi.org/10.1016/j.vacuum.2009.05.012

    CAS  Article  Google Scholar 

  9. Takai E, Kitano K, Kuwabara J et al (2012) Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution. Plasma Process Polym 9:77. https://doi.org/10.1002/ppap.201100063

    CAS  Article  Google Scholar 

  10. Lee HJ, Shon CH, Kim YS et al (2009) Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma. New J Phys 11:115026. https://doi.org/10.1088/1367-2630/11/11/115026

    CAS  Article  Google Scholar 

  11. Deng XT, Shi JJ, Kong MG (2007) Protein destruction by a helium atmospheric pressure glow discharge: capability and mechanisms. J Appl Phys 101:074701. https://doi.org/10.1063/1.2717576

    CAS  Article  Google Scholar 

  12. De Backer J, Razzokov J, Hammerschmid D et al (2018) The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: a potential tumor suppressor. Redox Biol 19:1. https://doi.org/10.1016/j.redox.2018.07.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380:345

    CAS  Article  Google Scholar 

  14. Stringfellow HM, Jones MR, Green MC et al (2014) Selectivity in ROS-induced peptide backbone bond cleavage. J Phys Chem A 118:11399. https://doi.org/10.1021/jp508877m

    CAS  Article  PubMed  Google Scholar 

  15. Platis IE, Ermacora MR, Fox RO (1993) Oxidative polypeptide cleavage mediated by EDTA-iron covalently linked to cysteine residues. Biochemistry 32:12761

    CAS  Article  Google Scholar 

  16. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313. https://doi.org/10.1074/jbc.272.33.20313

    CAS  Article  PubMed  Google Scholar 

  17. Kuchenbecker M, Bibinov N, Kaemlimg A et al (2009) Characterization of DBD plasma source for biomedical applications. J Phys D Appl Phys 42:045212

    Article  Google Scholar 

  18. Kitagawa M, Ara T, Arifuzzaman M et al (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291. https://doi.org/10.1093/dnares/dsi012

    CAS  Article  PubMed  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248

    CAS  Article  Google Scholar 

  20. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  21. Friedman M (2004) Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J Agric Food Chem 52:385. https://doi.org/10.1021/jf030490p

    CAS  Article  PubMed  Google Scholar 

  22. Girard F, Badets V, Blanc S et al (2016) Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma. RSC Adv 6:78457. https://doi.org/10.1039/c6ra12791f

    CAS  Article  Google Scholar 

  23. Krewing M, Stepanek JJ, Cremers C et al (2019) The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation. J R Soc Interface 16:20180966. https://doi.org/10.1098/rsif.2018.0966

    CAS  Article  PubMed  Google Scholar 

  24. Lackmann J-W, Baldus S, Steinborn E et al (2015) A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds. J Phys D Appl Phys 48:494003. https://doi.org/10.1088/0022-3727/48/49/494003

    CAS  Article  Google Scholar 

  25. Chauvin J, Judée F, Yousfi M et al (2017) Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Sci Rep. https://doi.org/10.1038/s41598-017-04650-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arjunan KP, Clyne AM (2011) Hydroxyl radical and hydrogen peroxide are primarily responsible for dielectric barrier discharge plasma-induced angiogenesis. Plasma Process Polym 8:1154. https://doi.org/10.1002/ppap.201100078

    CAS  Article  Google Scholar 

  27. Takai E, Kitamura T, Kuwabara J et al (2014) Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. J Phys D Appl Phys 47:285403. https://doi.org/10.1088/0022-3727/47/28/285403

    CAS  Article  Google Scholar 

  28. Bruggeman PJ, Kushner MJ, Locke BR et al (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002

    Article  Google Scholar 

  29. Balzer J, Demir E, Kogelheide F et al (2019) Cold atmospheric plasma (CAP) differently affects migration and differentiation of keratinocytes via hydrogen peroxide and nitric oxide-related products. Clin Plasma Med 13:1. https://doi.org/10.1016/j.cpme.2018.11.001

    Article  Google Scholar 

  30. Goldstein S, Czapski G (1984) Mannitol as an OH· scavenger in aqueous solutions and in biological systems. Int J Radiat Biol Relat Stud Phys Chem Med 46:725. https://doi.org/10.1080/09553008414551961

    CAS  Article  PubMed  Google Scholar 

  31. Baldus S, Schröder D, Bibinov N et al (2015) Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach. J Phys D Appl Phys 48:275203. https://doi.org/10.1088/0022-3727/48/27/275203

    CAS  Article  Google Scholar 

  32. Bauer G, Graves DB (2016) Mechanisms of selective antitumor action of cold atmospheric plasma-derived reactive oxygen and nitrogen species. Plasma Process Polym 13:1157. https://doi.org/10.1002/ppap.201600089

    CAS  Article  Google Scholar 

  33. Liu ZW, Yang XF, Zhu AM et al (2008) Determination of the OH radical in atmospheric pressure dielectric barrier discharge plasmas using near infrared cavity ring-down spectroscopy. Eur Phys J D 48:365. https://doi.org/10.1140/epjd/e2008-00110-7

    CAS  Article  Google Scholar 

  34. Hibert C, Gaurand I, Motret O et al (1999) [OH (X)] measurements by resonant absorption spectroscopy in a pulsed dielectric barrier discharge. J Appl Phys 85:7070

    CAS  Article  Google Scholar 

  35. Ono R, Oda T (2002) Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge. J Phys D Appl Phys 35:2133

    CAS  Article  Google Scholar 

  36. Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A 93:13635. https://doi.org/10.1073/pnas.93.24.13635

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Abdulkadir Yayci, Franz Narberhaus, and Lars Leichert for the fruitful discussions on this topic and Cinogy for providing the DBD source.

Funding

JEB gratefully acknowledges funding from the German Research Foundation (BA 4193/7-1 and CRC1316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Elisabeth Bandow.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krewing, M., Schubert, B. & Bandow, J.E. A Dielectric Barrier Discharge Plasma Degrades Proteins to Peptides by Cleaving the Peptide Bond. Plasma Chem Plasma Process 40, 685–696 (2020). https://doi.org/10.1007/s11090-019-10053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10053-2

Keywords

  • Atmospheric pressure non-thermal plasma
  • Amino acids
  • Hydroxyl radical
  • Hydroperoxyl radical
  • Bovine serum albumin