Skip to main content
Log in

Pattern Formation in High Power Impulse Magnetron Sputtering (HiPIMS) Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

High power impulse magnetron sputtering (HiPIMS) plasmas produce a very energetic growth flux for the synthesis of thin films with superior properties. High power densities in the range of a few \(\hbox {kW}/\hbox {cm}^2\) are applied to a metal target electrode in short pulses with a length of 10–\(400\,\upmu \hbox {s}\) and duty cycles of a few percent or less in an argon plasma gas. Fast camera and probe measurements revealed the formation of very characteristic plasma patterns that become visible as rotating localized ionization zones, so called spokes. The appearance of these spokes at high plasma powers is believed to be essential for the good performance of HiPIMS plasmas. The rotation direction of the spokes is in \(\vec {E} \times \vec {B}\) direction at high plasma powers, but in retrograde \(\vec {E} \times \vec {B}\) direction at low plasma powers. This characteristic behavior is explained by applying a simple drift wave model from literature and comparing the dispersion relation of those waves with measured data. The pronounced rotation reversal is explained by either a change in the governing density gradient in the plasma or by the change in the direction of the streaming ions during the transition from an argon dominated regime at low powers to a metal dominated regime at high powers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gudmundsson JT, Brenning N, Lundin D, Helmersson U (2012) J Vac Sci Technol A Vac Surf Films 30:030801

    Google Scholar 

  2. Anders A (2017) J Appl Phys 121:171101

    Google Scholar 

  3. Hecimovic A, von Keudell A (2018) J Phys D Appl Phys 51:453001

    Google Scholar 

  4. Lundin D, Minea T, Gudmundsson J (2019) High power impulse magnetron sputtering: fundamentals, technologes, challenges and applications, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  5. Kanitz A, Hecimovic A, Böke M, Winter J (2016) J Phys D Appl Phys 49:125203

    Google Scholar 

  6. Kadlec S (2007) Plasma Process Polym 4:S419–S423

    Google Scholar 

  7. Trieschmann J (2017) Contrib Plasma Phys 58:394–403

    Google Scholar 

  8. Mishra A, Kelly PJ, Bradley JW (2010) Plasma Sources Sci Technol 19:045014

    Google Scholar 

  9. Rauch A, Mendelsberg RJ, Sanders JM, Anders A (2012) J Appl Phys 111:083302–083302-12

    Google Scholar 

  10. Kozyrev AV, Sochugov NS, Oskomov KV, Zakharov AN, Odivanova AN (2011) Plasma Phys Rep 37:621–627

    CAS  Google Scholar 

  11. Ehiasarian A P, Hecimovic A, de los Arcos T, New R, Schulz-von der Gathen V, Böke M, Winter J (2012) Appl Phys Lett 100:114101

    Google Scholar 

  12. Anders A (2012) Appl Phys Lett 100:224104

    Google Scholar 

  13. Janes GS (1966) Phys Fluids 9:1115

    CAS  Google Scholar 

  14. Rauch A, Anders A (2013) Vacuum 89:53–56

    CAS  Google Scholar 

  15. Krüger D, Köhn K, Gallian S, Brinkmann RP (2018) Phys Plasmas 25:061207

    Google Scholar 

  16. Poolcharuansin P, Liebig B, Bradley JW (2012) Plasma Sources Sci Technol 21:015001

    Google Scholar 

  17. Hnilica J, Klein P, Šlapanská M, Fekete M, Vašina P (2018) J Phys D Appl Phys 51:095204

    Google Scholar 

  18. Hecimovic A, Böke M, Winter J (2014) J Phys D Appl Phys 47:102003

    Google Scholar 

  19. Ni PA, Hornschuch C, Panjan M, Anders A (2012) Appl Phys Lett 101:224102–224102-5

    Google Scholar 

  20. Preissing S (2016) Spectroscopic investigation of an extensive magnetron plasma. Master thesis Ruhr University Bochum Bochum

  21. Anders A, Yang Y (2017) Appl Phys Lett 111:064103

    Google Scholar 

  22. Bobzin K, Brögelmann T, Kruppe NC, Engels M, von Keudell A, Hecimovic A, Ludwig A, Grochla D, Banko L (2017) J Appl Phys 122:015302

    Google Scholar 

  23. Yang Y, Zhou X, Liu JX, Anders A (2016) Appl Phys Lett 108:034101

    Google Scholar 

  24. Hecimovic A (2016) J Phys D Appl Phys 49:18LT01

    Google Scholar 

  25. Hecimovic A, Maszl C, Schulz-von der Gathen V, Böke M, von Keudell A (2016) Plasma Sources Sci Technol 25:035001

    Google Scholar 

  26. Hecimovic A, Schulz-von der Gathen V, Böke M, von Keudell A, Winter J (2015) Plasma Sources Sci Technol 24:045005

    Google Scholar 

  27. Klein P, Estrin FL, Hnilica J, Vašina P, Bradley JW (2017) J Phys D Appl Phys 50:015209

    Google Scholar 

  28. Poolcharuansin P, Estrin FL, Bradley JW (2015) J Appl Phys 117:163304

    Google Scholar 

  29. Brenning N, Lundin D (2012) Phys Plasmas 19:093505

    Google Scholar 

  30. Panjan M, Loquai S, Klemberg-Sapieha JE, Martinu L (2015) Plasma Sources Sci Technol 24:065010

    Google Scholar 

  31. Panjan M, Anders A (2017) J Appl Phys 121:063302

    Google Scholar 

  32. Estrin FL, Karkari SK, Bradley JW (2017) J Phys D Appl Phys 50:295201

    Google Scholar 

  33. Hecimovic A, Held J, der Gathen V S v, Breilmann W, Maszl C, von Keudell A (2017) J Phys D Appl Phys 50:505204

    Google Scholar 

  34. Bohlmark J, Lattemann M, Gudmundsson J, Ehiasarian A, Aranda Gonzalvo Y, Brenning N, Helmersson U (2006) Thin Solid Films 515:1522–1526

    CAS  Google Scholar 

  35. Breilmann W, Eitrich A, Maszl C, Hecimovic A, Layes V, Benedikt J, von Keudell A (2015) J Phys D Appl Phys 48:295202

    Google Scholar 

  36. Panjan M, Franz R, Anders A (2014) Plasma Sources Sci Technol 23:025007

    Google Scholar 

  37. Franz R, Clavero C, Kolbeck J, Anders A (2016) Plasma Sources Sci Technol 25:015022

    Google Scholar 

  38. Yang Y, Tanaka K, Liu J, Anders A (2015) Appl Phys Lett 106:124102

    Google Scholar 

  39. Biskup B, Maszl C, Breilmann W, Held J, Böke M, Benedikt J, von Keudell A (2018) J Phys D Appl Phys 51:115201

    Google Scholar 

  40. Held J, Hecimovic A, von Keudell A, Schulz-von der Gathen V (2018) Plasma Sources Sci Technol 27:105012

    Google Scholar 

  41. Maszl C, Breilmann W, Benedikt J, von Keudell A (2014) J Phys D Appl Phys 47:224002

    Google Scholar 

  42. Anders A, Panjan M, Franz R, Andersson J, Ni P (2013) Appl Phys Lett 103:144103

    Google Scholar 

  43. Held J, Maaß P, Schulz-von der Gathen V, von Keudell A (2019) Plasma Sources Sci Technol (accepted)

  44. Winter J, Hecimovic A, de los Arcos T, Böke M, Schulz-von der Gathen V (2013) J Phys D Appl Phys 46:084007

    Google Scholar 

  45. Lundin D, Helmersson U, Kirkpatrick S, Rohde S, Brenning N (2008) Plasma Sources Sci Technol 17:025007

    Google Scholar 

  46. Tsikata S, Minea T (2015) Phys Rev Lett 114:185001

    PubMed  Google Scholar 

  47. Boeuf JP, Chaudhury B (2013) Phys Rev Lett 111:155005

    PubMed  Google Scholar 

  48. Boeuf JP (2014) Front Phys 2:74

    Google Scholar 

  49. Revel A, Minea T, Tsikata S (2016) Phys Plasmas 23:100701

    Google Scholar 

  50. Simon A (1963) Phys Fluids 6:382

    Google Scholar 

  51. Hoh FC (1963) Phys Fluids 6:1184

    Google Scholar 

  52. Breilmann W, Maszl C, Hecimovic A, von Keudell A (2017) J Phys D Appl Phys 50:135203

    Google Scholar 

  53. Frias W, Smolyakov AI, Kaganovich ID, Raitses Y (2012) Phys Plasmas 19:072112

    Google Scholar 

  54. Ito T, Young CV, Cappelli MA (2015) Appl Phys Lett 106:254104

    Google Scholar 

  55. Yang Y, Liu J, Liu L, Anders A (2014) Appl Phys Lett 105:254101

    Google Scholar 

  56. Liebig B, Bradley JW (2013) Plasma Sources Sci Technol 22:045020

    Google Scholar 

  57. Bradley JW, Thompson S, Gonzalvo YA (2001) Plasma Sources Sci Technol 10:490

    Google Scholar 

Download references

Acknowledgements

This project is supported by the DFG (German Science Foundation) within the framework of the Coordinated Research Centre SFB TR 87 at Ruhr-University Bochum. The authors like to thank A. Hecimovic and C. Maszl for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim von Keudell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Held, J., von Keudell, A. Pattern Formation in High Power Impulse Magnetron Sputtering (HiPIMS) Plasmas. Plasma Chem Plasma Process 40, 643–660 (2020). https://doi.org/10.1007/s11090-019-10052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10052-3

Keywords

Navigation