Skip to main content

Advertisement

Log in

Lignite Gasification in Thermal Steam Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Recycling of organic waste is an increasingly hot topic in recent years. This issue becomes even more interesting if such processing leads to a source of hydrogen or syngas for fuel production. A process of high-temperature decomposition of lignite was studied on the plasma gasification reactor PLASGAS, where water-stabilized plasma torch was used as a source of high-enthalpy plasma. The plasma torch power was 120 kW and allowed heating of the reactor to more than 1000 °C. The material feeding rate in the gasification reactor was 30 or 60 kg per hour that is comparable to a small industrial production process. The efficiency evaluation of the thermal decomposition process was performed. Energy balance of the process was carried out as well as an influence of the lignite particle size and the addition of methane (CH4) on the synthesis gas composition. The ratio H2/CO was in the range of 1.5–2.5 depending on the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boerrigter H, van der Drift B (2005) “Biosyngas” key-intermediate for production of renewable transportation fuels, chemicals and electricity. In: 14th European biomass conference and exhibition, Paris. ECN report ECN-RX-05-181

  2. Surisetty VR, Kozinski J, Dalai AK (2012) Biomass, availability in Canada, and gasification: an overview. Biomass Conv Bioref 2:73–85

    Article  Google Scholar 

  3. Ye DP, Agnew JB, Zhang DK (1998) Gasification of a south Australian low rank coal with carbon dioxide and steam: kinetics and reactivity studies. Fuel 77:1209e19

    Article  Google Scholar 

  4. Kajitani S, Suzuki N, Ashizawa M, Hara S (2006) CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel 85:163e9

    Article  CAS  Google Scholar 

  5. Wu SY, Gu J, Li L, Wu YQ, Gao JS (2006) Gasification reactivity of rapid and slow pyrolyzed Shenfu chars with CO2 at high carbon conversions and elevated temperatures. J Fuel Chem Technol 34:339e43

    Google Scholar 

  6. Gomez-Barea A, Leckner B, Villanueva-Perales A, Nilsson S, Fuentes-Cano D (2013) Improving the performance of fluidized bed biomass/waste gasifiers for distributed electricity: a new three-stage gasification system. Appl Therm Eng 50:1453–1462

    Article  CAS  Google Scholar 

  7. Meng X, de Jong W, Fu N, Verkooijen AHM (2011) Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: effects of operational conditions on product gas distribution and tar formation. Biomass Bioenergy 35:2910–2924

    Article  CAS  Google Scholar 

  8. Alauddin ZA, Lahijani P, Mohammadi M, Mohamed AR (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sustain Energy Rev 14:2852–2862

    Article  CAS  Google Scholar 

  9. Sheth PN, Babu BV (2009) Experimental studies on producer gas generation from wood waste in a downdraft gasifier. Bioresour Technol 100:3127–3133

    Article  CAS  PubMed  Google Scholar 

  10. Seggiani M, Vitolo S, Puccini M, Bellini A (2012) Cogasification of sewage sludge in an updraft gasifier. Fuel 93:486–491

    Article  CAS  Google Scholar 

  11. Plis P, Wilk RK (2011) Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier. Energy 36:3838–3845

    Article  CAS  Google Scholar 

  12. Heidenreich S, Foscolo PU, Nacken M, Rapagna S (2008) Gasification apparatus and method for generating syngas from gasifiable feedstock material. PCT Patent Application PCT/EP2008/003523

  13. Henriksen U, Ahrenfeldt J, Jensen TK, Gobel B, Bentzen JD, Hindsgaul C et al (2006) The design, construction and operation of a 75 kW two-stage gasifier. Energy 31:1542–1553

    Article  CAS  Google Scholar 

  14. Koppatz S, Schmid JC, Pfeifer C, Hofbauer H (2012) The effect of bed particle inventories with different particle sizes in a dual fluidized bed pilot plant for biomass steam gasification. Ind Eng Chem Res 51:10492–10502

    Article  CAS  Google Scholar 

  15. Houben MP, de Lange HC, van Steenhoven AA (2005) Tar reduction through partial combustion of fuel gas. Fuel 84:817–824

    Article  CAS  Google Scholar 

  16. Negro SO, Suurs RAA, Hekkert MP (2008) The bumpy road of biomass gasification in the Netherlands: explaining the rise and fall of an emerging innovation system. Technol Forecast Soc Change 75(1):57–77

    Article  Google Scholar 

  17. Gröbl T, Walter H, Haider M (2012) Biomass steam gasification for production of SNG—process design and sensitivity analysis. Appl Energy 97:451–461

    Article  CAS  Google Scholar 

  18. Narvaez A, Chadwick D, Kershenbaum L (2014) Small-medium scale polygeneration systems: methanol and power production. Appl Energy 113:1109–1117

    Article  CAS  Google Scholar 

  19. Shabani S, Delavar MA, Azmi M (2013) Investigation of biomass gasification hydrogen and electricity co-production with carbon dioxide capture and storage. Int J Hydrog Energy 38:3630–3639

    Article  CAS  Google Scholar 

  20. Kıpcak E, Akgün M (2012) Oxidative gasification of olive mill wastewater as a biomass source in supercritical water: effects on gasification yield and biofuel composition. J Supercrit Fluids 69:57–63

    Article  CAS  Google Scholar 

  21. Fabry F, Rehmet Ch, Rohani V, Fulcheri L (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valoriz 4:421–439

    Article  CAS  Google Scholar 

  22. Hrabovsky M, Hlina M, Kopecky V, Maslani A, Zivny O, Krenek P, Serov A, Hurba O (2017) Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem Plasma Process 37:739–762

    Article  CAS  Google Scholar 

  23. Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001

    Article  CAS  Google Scholar 

  24. Moustakas M, Fatta D, Malamis S, Haralambous K, Loizidou M (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater 123:120–126

    Article  CAS  PubMed  Google Scholar 

  25. Gomez E, Amutha Rani D, Cheeseman CR, Deegan D, Wise M, Boccaccini AR (2009) Thermal plasma technology for the treatment of wastes: a critical rewiev. J Hazard Mater 161:614–626

    Article  CAS  PubMed  Google Scholar 

  26. Rutberg PG, Kuznetsov VA, Serba EO, Popov SD, Surov AV, Nakonechny GV, Nikonov AV (2013) Novel three-phase steam-air plasma torch for gasification of high-caloric waste. Appl Energy 108:505–514

    Article  CAS  Google Scholar 

  27. Ruj B, Ghosh S (2014) Technological aspects for thermal plasma treatment of municipal solid waste—a review. Fuel Process Technol 126:298–308

    Article  CAS  Google Scholar 

  28. Qiu J, He X, Sun T, Zhao Z, Zhou Y, Guo S et al (2004) Coal gasification in steam and air medium under plasma conditions: a preliminary study. Fuel Process Technol 85:969e82

    Google Scholar 

  29. Messerle VE, Ustimenko AB, Lavrichev OA (2016) Comparative study of coal plasma gasification: simulation and experiment. Fuel 164:172–179

    Article  CAS  Google Scholar 

  30. Uhm Han S, Na Young H, Hong Yong C, Shin Dong H, Cho Chang H (2014) Production of hydrogen-rich synthetic gas from low-grade coals by microwave steam-plasmas. Int J Hydrog Energy 39:4351–4355

    Article  CAS  Google Scholar 

  31. Galvita V, Messerle VE, Ustimenko AB (2007) Hydrogen production by coal plasma gasification for fuel cell technology. Int J Hydrog Energ 32(16):3899–3906

    Article  CAS  Google Scholar 

  32. Hrabovsky M, Kopecky V, Sember V, Kavka T, Chumak O (2006) Properties of hybrid water/gas DC arc plasma torch. IEEE Trans Plasma Sci 34:1566–1575

    Article  Google Scholar 

  33. Hrabovsky M (2002) Generation of thermal plasmas in liquid and hybrid DC arc torches. Pure Appl Chem 74:429–433

    Article  CAS  Google Scholar 

  34. Hrabovsky M, Konrad M, Kopecky V, Hlina J, Benes J, Vesely E (1997) Motion of anode attachment and fluctuations of plasma jet in dc arc plasma torch. High Temp Mat Process 1:167–178

    Article  Google Scholar 

  35. Hrabovsky M (2011) Progress in biomass and bioenergy production. https://doi.org/10.5772/18234

  36. Hrabovsky M, Konrad M, Kopecky V, Sember V (1997) Processes and properties of electric arc stabilized by water vortex. IEEE Trans Plasma Sci 25(5):833–839

    Article  Google Scholar 

  37. Hatzilyberis KS, Androutsopoulos GP (2006) Lignite chemical conversion in an indirect heat rotary kiln gasifier. Therm Sci 10(3):181–197

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of the Grant Agency of CR under the Project Numbers GA15-19444S and GC17-10246J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Serov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serov, A.A., Hrabovsky, M., Kopecky, V. et al. Lignite Gasification in Thermal Steam Plasma. Plasma Chem Plasma Process 39, 395–406 (2019). https://doi.org/10.1007/s11090-019-09957-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09957-w

Keywords

Navigation