Skip to main content
Log in

A Novel ICP Torch with Conical Geometry

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper presents the development of a novel radio-frequency inductively coupled plasma (RF-ICP) torch. Computer simulations and experiments were employed to investigate the underlying phenomena which led to improved excitation temperature, electron density, robustness, and multielement detection limits of a new analytical ICP torch. Due to its conical geometry, compared to conventional torches, the new torch consumes 50–70% less argon and power. Additionally, the new torch has higher power density, better plasma stability, and better resistance against extinguishing factors. A comparison of time-lapse images of conventional and conical torches shows an enhancement in the plasma ignition process for the new torch. In agreement with simulations, spectroscopic measurements demonstrate that the new torch offers 1200 K higher excitation temperature compared to the conventional torch for the same power input. These improvements result in faster ionization/excitation of the sample particles as shown by the simulation results. In combination with improved particle trajectories inside plasma, this feature is expected to allow higher rates of analysis in single-particle ICP-mass spectrometry with improved sensitivity and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Thomas R (2013) Practical guide to ICP-MS: a tutorial for beginners. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Montaser A (1998) Inductively coupled plasma mass spectrometry. Wiley, New York

    Google Scholar 

  3. Montaser A (1992) Inductively coupled plasmas in analytical atomic spectrometry, 2nd edn. Wiley, New York

    Google Scholar 

  4. Wendt RH, Fassel VA (1966) Atomic absorption with induction-coupled plasmas. Anal Chem 38(2):337–338. https://doi.org/10.1021/ac60234a003

    Article  CAS  Google Scholar 

  5. Boumans PWJM, De Boer FJ (1972) Studies of flame and plasma torch emission for simultaneous multi-element analysis—I: preliminary investigations. Spectrochim Acta Part B 27(9):391–414. https://doi.org/10.1016/0584-8547(72)80038-7

    Article  CAS  Google Scholar 

  6. Hoare HC, Mostyn RA (1967) Emission spectrometry of solutions and powders with a high-frequency plasma source. Anal Chem 39(10):1153–1155. https://doi.org/10.1021/ac60254a025

    Article  CAS  Google Scholar 

  7. Hittorf W (1884) Ueber die electricitaetsleitung der gase. Ann Phys (Berlin, Ger) 257(1):90–139

    Article  Google Scholar 

  8. Thomson J (1891) XLI. On the discharge of electricity through exhausted tubes without electrodes. Lond Edinb Dublin Philos Mag J Sci 32(197):321–336

    Article  Google Scholar 

  9. Babat GI (1947) Electrodeless discharges and some allied problems. J Inst Electr Eng Part III Radio Commun Eng 94(27):27–37

    Google Scholar 

  10. Reed TB (1961) Induction-coupled plasma torch. J Appl Phys (Melville, NY, USA) 32(5):821–824

    Article  CAS  Google Scholar 

  11. Reed TB (1961) Growth of refractory crystals using the induction plasma torch. J Appl Phys (Melville, NY, USA) 32(12):2534–2535

    Article  Google Scholar 

  12. Greenfield S, Jones IL, Berry C (1964) High-pressure plasmas as spectroscopic emission sources. Analyst 89(1064):713–720

    Article  CAS  Google Scholar 

  13. Greenfield S, Jones IL, Berry C, Bunch L (1965) The high frequency torch: some facts, figures, and thoughts. Anal Chem Soc Proc 2:111

    Google Scholar 

  14. Wendt RH, Fassel VA (1965) Induction-coupled plasma spectrometric excitation source. Anal Chem 37(7):920–922

    Article  CAS  Google Scholar 

  15. Dickinson GW, Fassel VA (1969) Emission-spectrometric detection of the elements at the nanogram per milliliter level using induction-coupled plasma excitation. Anal Chem 41(8):1021–1024. https://doi.org/10.1021/ac60277a028

    Article  CAS  Google Scholar 

  16. Greenfield S, Smith PB (1972) The determination of trace metals in microlitre samples by plasma torch excitation: with special reference to oil, organic compounds and blood samples. Anal Chim Acta 59(3):341–348. https://doi.org/10.1016/0003-2670(72)80002-3

    Article  CAS  PubMed  Google Scholar 

  17. Scott RH, Fassel VA, Kniseley RN, Nixon DE (1974) Inductively coupled plasma-optical emission analytical spectrometry. Anal Chem 46(1):75–80

    Article  CAS  Google Scholar 

  18. Greenfield S, Jones IL, McGeachin HM, Smith PB (1975) Automatic multi-sample simultaneous multi-element analysis with a h.f. plasma torch and direct reading spectrometer. Anal Chim Acta 74(2):225–245. https://doi.org/10.1016/S0003-2670(01)95773-3

    Article  CAS  Google Scholar 

  19. Greenfield S (2000) Invention of the annular inductively coupled plasma as a spectroscopic source. J Chem Educ 77(5):584. https://doi.org/10.1021/ed077p584

    Article  CAS  Google Scholar 

  20. Genna JL, Barnes RM, Allemand CD (1977) Modified inductively coupled plasma arrangement for easy ignition and low gas consumption. Anal Chem 49(9):1450–1453. https://doi.org/10.1021/ac50017a040

    Article  CAS  Google Scholar 

  21. Allemand CD, Barnes RM (1977) A study of inductively coupled plasma torch configurations. Appl Spectrosc 31(5):434–443

    Article  CAS  Google Scholar 

  22. Savage RN, Hieftje GM (1979) Development and characterization of a miniature inductively coupled plasma source for atomic emission spectrometry. Anal Chem 51(3):408–413. https://doi.org/10.1021/ac50039a020

    Article  CAS  Google Scholar 

  23. Ebdon L, Mowthorpe DJ, Cave MR (1980) A versatile new torch for inductively coupled plasma spectrometry. Anal Chim Acta 115:171–178. https://doi.org/10.1016/S0003-2670(01)93155-1

    Article  CAS  Google Scholar 

  24. Boulos M, Lesinski J, Barnes R (1982) Velocity field measurements in an inductively coupled plasma. Sherbrooke Univ., Quebec (Canada). Dept. of Chemical Engineering

  25. Weiss AD, Savage RN, Hieftje GM (1981) Development and characterization of a 9-mm inductively-coupled argon plasma source for atomic emission spectrometry. Anal Chim Acta 124(2):245–258. https://doi.org/10.1016/S0003-2670(01)93571-8

    Article  CAS  Google Scholar 

  26. Montaser A, Huse GR, Wax RA, Chan SK, Golightly DW, Kane JS, Dorrzapf AF (1984) Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry. Anal Chem 56(2):283–288. https://doi.org/10.1021/ac00266a037

    Article  CAS  Google Scholar 

  27. Rezaaiyaan R, Hieftje GM, Anderson H, Kaiser H, Meddings B (1982) Design and construction of a low-flow, low-power torch for inductively coupled plasma spectrometry. Appl Spectrosc 36(6):627–631

    Article  CAS  Google Scholar 

  28. van der Plas PSC, de Galan L (1984) A radiatively cooled torch for ICP-AES using 1 min−1 of argon. Spectrochim Acta Part B 39(9–11):1161–1169. https://doi.org/10.1016/0584-8547(84)80202-5

    Article  Google Scholar 

  29. Pfeifer T, Janzen R, Steingrobe T, Sperling M, Franze B, Engelhard C, Buscher W (2012) Development of a novel low-flow ion source/sampling cone geometry for inductively coupled plasma mass spectrometry and application in hyphenated techniques. Spectrochim Acta Part B 76:48–55. https://doi.org/10.1016/j.sab.2012.06.053

    Article  CAS  Google Scholar 

  30. Barnes RM, Nikdel S (1976) Temperature and velocity profiles and energy balances for an inductively coupled plasma discharge in nitrogen. J Appl Phys (Melville, NY, USA) 47(9):3929–3934. https://doi.org/10.1063/1.323266

    Article  CAS  Google Scholar 

  31. Lindner H, Murtazin A, Groh S, Niemax K, Bogaerts A (2011) Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma. Anal Chem 83(24):9260–9266. https://doi.org/10.1021/ac201699q

    Article  CAS  PubMed  Google Scholar 

  32. Miyahara H, Iwai T, Kaburaki Y, Kozuma T, Shigeta K, Okino A (2014) A new air-cooled argon/helium-compatible inductively coupled plasma torch. Anal Sci 30(2):231–235. https://doi.org/10.2116/analsci.30.231

    Article  CAS  PubMed  Google Scholar 

  33. Kornblum GR, Van der Waa W, De Galan L (1979) Reduction of argon consumption by a water cooled torch in inductively coupled plasma emission spectrometry. Anal Chem 51(14):2378–2381. https://doi.org/10.1021/ac50050a020

    Article  CAS  Google Scholar 

  34. Ripson PAM, de Galan L, de Ruiter JW (1982) An inductively coupled plasma using 1 min of argon. Spectrochim Acta Part B 37(8):733–738. https://doi.org/10.1016/0584-8547(82)80086-4

    Article  Google Scholar 

  35. Praphairaksit N, Wiederin DR, Houk RS (2000) An externally air-cooled low-flow torch for inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 55(8):1279–1293. https://doi.org/10.1016/S0584-8547(00)00216-0

    Article  Google Scholar 

  36. Scheffer A, Brandt R, Engelhard C, Evers S, Jakubowski N, Buscher W (2006) A new ion source design for inductively coupled plasma mass spectrometry (ICP-MS). J Anal At Spectrom 21(2):197–200. https://doi.org/10.1039/B510779B

    Article  CAS  Google Scholar 

  37. Engelhard C, Scheffer A, Maue T, Hieftje GM, Buscher W (2007) Application of infrared thermography for online monitoring of wall temperatures in inductively coupled plasma torches with conventional and low-flow gas consumption. Spectrochim Acta Part B 62(10):1161–1168. https://doi.org/10.1016/j.sab.2007.07.010

    Article  CAS  Google Scholar 

  38. Engelhard C, Scheffer A, Nowak S, Vielhaber T, Buscher W (2007) Trace element determination using static high-sensitivity inductively coupled plasma optical emission spectrometry (SHIP-OES). Anal Chim Acta 583(2):319–325. https://doi.org/10.1016/j.aca.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  39. Klostermeier A, Engelhard C, Evers S, Sperling M, Buscher W (2005) New torch design for inductively coupled plasma optical emission spectrometry with minimised gas consumption. J Anal At Spectrom 20(4):308–314. https://doi.org/10.1039/B416632A

    Article  CAS  Google Scholar 

  40. van Der Plas PSC, de Waaij AC, de Galan L (1985) Analytical evaluation of an air-cooled 1 min−1 argon ICP. Spectrochim Acta Part B 40(10):1457–1466. https://doi.org/10.1016/0584-8547(85)80169-5

    Article  Google Scholar 

  41. Ripson PAM, de Galan L (1983) Empirical power balances for conventional and externally cooled inductively-coupled argon plasmas. Spectrochim Acta Part B 38(5–6):707–726. https://doi.org/10.1016/0584-8547(83)80171-2

    Article  Google Scholar 

  42. Alavi S, Khayamian T, Mostaghimi J (2018) Conical torch: the next-generation inductively coupled plasma source for spectrochemical analysis. Anal Chem 90(5):3036–3044. https://doi.org/10.1021/acs.analchem.7b04356

    Article  CAS  PubMed  Google Scholar 

  43. Smith LM, Keefer DR, Sudharsanan S (1988) Abel inversion using transform techniques. J Quant Spectrosc Radiat Transfer 39(5):367–373

    Article  CAS  Google Scholar 

  44. Norlén G (1973) Wavelengths and energy levels of Ar I and Ar II based on new interferometric measurements in the region 3400–9800 Å. Phys Scr 8(6):249

    Article  Google Scholar 

  45. Wende B (1968) Optical transition probabilities of the configurations 3p 54s–3p 55p of argon I. Physikalisch-Technische Bundesanstalt, Berlin

    Google Scholar 

  46. Furuta N, Nojiri Y, Fuwa K (1985) Spatial profile measurement of electron number densities and analyte line intensities in an inductively coupled plasma. Spectrochim Acta Part B 40(3):423–434

    Article  Google Scholar 

  47. Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  48. Mermet J (1991) Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnostics. Anal Chim Acta 250:85–94

    Article  CAS  Google Scholar 

  49. Olesik JW, Hobbs SE (1994) Monodisperse dried microparticulate injector: a new tool for studying fundamental processes in inductively coupled plasmas. Anal Chem 66(20):3371–3378

    Article  CAS  Google Scholar 

  50. Olesik JW (1997) Investigating the fate of individual sample droplets in inductively coupled plasmas. Appl Spectrosc 51(5):158A–175A

    Article  CAS  Google Scholar 

  51. Groh S, Garcia CC, Murtazin A, Horvatic V, Niemax K (2009) Local effects of atomizing analyte droplets on the plasma parameters of the inductively coupled plasma. Spectrochim Acta Part B 64(3):247–254

    Article  CAS  Google Scholar 

  52. Aghaei M, Flamigni L, Lindner H, Günther D, Bogaerts A (2014) Occurrence of gas flow rotational motion inside the ICP torch: a computational and experimental study. J Anal At Spectrom 29(2):249–261

    Article  CAS  Google Scholar 

  53. Laborda F, Bolea E, Jiménez-Lamana J (2013) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. ACS Publications, Washington, DC

    Google Scholar 

  54. Garcia CC, Murtazin A, Groh S, Horvatic V, Niemax K (2010) Characterization of single Au and SiO2 nano-and microparticles by ICP-OES using monodisperse droplets of standard solutions for calibration. J Anal At Spectrom 25(5):645–653

    Article  CAS  Google Scholar 

  55. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33(7):323–332. https://doi.org/10.1016/j.it.2012.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support of Natural Sciences and Engineering Research Council (NSERC) of Canada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mostaghimi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S., Mostaghimi, J. A Novel ICP Torch with Conical Geometry. Plasma Chem Plasma Process 39, 359–376 (2019). https://doi.org/10.1007/s11090-018-9948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9948-5

Keywords

Navigation