Skip to main content
Log in

Feasibility of Atmospheric-Pressure CO Cold Plasma for Reduction of Supported Metal Ions

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

An atmospheric pressure (AP) carbon monoxide (CO) cold plasma method was developed and employed to reduce supported metal ions for the first time. HAuCl4, AgNO3, H2PtCl6, and Pd(NO3)2 ions supported on a commercial sample of TiO2 (Degussa P25) were reduced by AP CO cold plasma. The results of UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) and X-ray photoelectron spectroscopy (XPS) indicate that the supported metal ions are reduced to their metallic states. Au/P25-CP and Au/P25-HP were prepared by CO and H2 cold plasma, respectively, to investigate the reduction ability of CO cold plasma. XPS and transmission electron spectroscopy analyses show that the gold nanoparticles in Au/P25-CP and Au/P25-HP exist in the form of metallic gold, and exhibit similar size. Interestingly, a blue shift of the surface plasmon resonance peak was observed for Au/P25-CP because of the amorphous carbon formed by CO dissociation. In situ optical emission spectrum of the CO cold plasma was recorded and excited CO molecules were deemed to be the reducing agents. CO cold plasma was also adopted to reduce P25 supported copper ions, while metallic copper nanoparticles were obtained accompanied by a certain amount of oxidized copper species. AP CO cold plasma is as effective as H2 plasma for reducing supported metal ions, and has great potential for tuning the SPR absorption.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ariricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  2. Prieto G, Zečević J, Friedrich H, de Jong KP, de Jongh PE (2013) Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater 12:34–39

    Article  CAS  Google Scholar 

  3. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107(5):1692–1744

    Article  CAS  Google Scholar 

  4. Yang H, Wang Z-H, Zheng Y-Y, He L-Q, Zhan C, Lu XH, Tian Z-Q, Fang P-P, Tong YX (2016) Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance. J Am Chem Soc 138(50):16204–16207

    Article  CAS  Google Scholar 

  5. Liu CJ, Li MY, Wang JQ, Zhou XT, Guo QT, Yan JM (2016) Plasma methods for preparing green catalysts: current status and perspective. Chin J Catal 37(3):340–348

    Article  CAS  Google Scholar 

  6. Zhu B, Jang BW-L (2014) Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. J Mol Catal Chem 395:137–144

    Article  CAS  Google Scholar 

  7. Di LB, Xu ZJ, Wang K, Zhang XL (2013) A facile method for preparing Pt/TiO2 photocatalyst with enhanced activity using dielectric barrier discharge. Catal Today 211:109–113

    Article  CAS  Google Scholar 

  8. Hong JP, Chu W, Chernavskii PA, Khodakov AY (2010) Cobalt species and cobalt-support interaction in glow discharge plasma-assisted Fischer–Tropsch catalysts. J Catal 273(1):9–17

    Article  CAS  Google Scholar 

  9. Wang W, Wang ZY, Yang MM, Zhong C-J, Liu C-J (2016) Highly active and stable Pt(111) catalysts synthesized by peptide assisted room temperature electron reduction for oxygen reduction reaction. Nano Energy 25:26–33

    Article  CAS  Google Scholar 

  10. Di LB, Zhang XL, Xu ZJ, Wang K (2014) Atmospheric-pressure cold plasma for preparation of high performance Pt/TiO2 photocatalyst and its mechanism. Plasma Chem Plasma Process 34:301–311

    Article  CAS  Google Scholar 

  11. Qi B, Di LB, Xu WJ, Zhang XL (2014) Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation. J Mater Chem A 2:11885–11890

    Article  CAS  Google Scholar 

  12. Xu WJ, Zhan ZB, Di LB, Zhang XL (2015) Enhanced activity for CO oxidation over Pd/Al2O3 catalysts prepared by atmospheric-pressure cold plasma. Catal Today 256:148–152

    Article  CAS  Google Scholar 

  13. Di L, Li Z, Park D-W, Lee B, Zhang XL (2017) Atmospheric-pressure cold plasma for synthesizing Pd/FeOx catalysts with enhanced low-temperature CO oxidation activity. Jpn J Appl Phys 56:060301

    Article  Google Scholar 

  14. Xu WY, Wang XZ, Zhou Q, Meng B, Zhao JT, Qiu JS, Gogotsi Y (2012) Low-temperature plasma-assisted preparation of graphene supported palladium nanoparticles with high hydrodesulfurization activity. J Mater Chem 22:14363–14368

    Article  CAS  Google Scholar 

  15. Hua W, Jin LJ, He XF, Liu JH, Hu HQ (2011) Preparation of Ni/MgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma. Catal Commun 11(11):968–972

    Article  Google Scholar 

  16. Gallon HJ, Tu X, Twigg MV, Whitehead JC (2011) Plasma-assisted methane reduction of a NiO catalyst—low temperature activation of methane and formation of carbon nanofibers. Appl Catal B 106(3–4):616–620

    Article  CAS  Google Scholar 

  17. Hu SZ, Li FY, Fan ZP, Gui JZ (2014) Improved photocatalytic hydrogen production property over Ni/NiO/N–TiO2−x heterojunction nanocomposite prepared by NH3 plasma treatment. J Power Sources 250:30–39

    Article  CAS  Google Scholar 

  18. Jin LJ, Li Y, Lin P, Hu HQ (2014) CO2 reforming of methane on Ni/γ-Al2O3 catalyst prepared by dielectric barrier discharge hydrogen plasma. Int J Hydrog Energy 39(11):5756–5763

    Article  CAS  Google Scholar 

  19. Karuppiah J, Mok YS (2014) Plasma-reduced Ni/γ–Al2O3 and CeO2–Ni/γ-Al2O3 catalysts for improving dry reforming of propane. Int J Hydrog Energy 39(29):16329–16338

    Article  CAS  Google Scholar 

  20. Pan Y-X, You Y, Xin S, Li Y, Fu G, Cui Z, Men Y-L, Cao F-F, Yu S-H, Goodenough JB (2017) Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J Am Chem Soc 139(11):4123–4129

    Article  CAS  Google Scholar 

  21. Joo SH, Park JY, Tsung CK, Yamada Y, Yang PD, Somorjai GA (2009) Thermally stable Pt/mesoporous sililca core-shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131

    Article  CAS  Google Scholar 

  22. Zhang Q, Lee I, Ge JP, Zaera F, Yin YD (2010) Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts. Adv Funct Mater 20(14):2201–2214

    Article  CAS  Google Scholar 

  23. Lu JL, Elam JW, Stair PC (2013) Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc Chem Res 46(8):1806–1815

    Article  CAS  Google Scholar 

  24. Tian H, Li XY, Zeng L, Gong JL (2015) Recent advances on the design of group VIII base-metal catalysts with encapsulated structures. ACS Catal 5(8):4959–4977

    Article  CAS  Google Scholar 

  25. Zhan W, He Q, Liu X, Guo Y, Wang Y, Wang L, Guo Y, Borisevich AY, Zhang J, Lu G, Dai S (2016) A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts. J Am Chem Soc 138(49):16130–16139

    Article  CAS  Google Scholar 

  26. Gulyaev RV, Slavinskaya EM, Novopashin SA, Smovzh DV, Zaikovskii AV, Osadchii DY, Bulavchenko OA, Korenev SV, Boronin AI (2014) Highly active PdCeOx composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis. Appl Catal B 147:32–143

    Article  Google Scholar 

  27. Wang QM, Chen SG, Shi F, Chen K, Nie Y, Wang Y, Wu R, Li J, Zhang Y, Ding W (2016) Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-Skin surface via space-confined pyrolysis and the nanoscale Kirkendall effect. Adv Mater 28(48):10673–10678

    Article  CAS  Google Scholar 

  28. Di LB, Li Z, Lee B, Park D-W (2017) An alternative atmospheric-pressure cold plasma method for synthesizing Pd/P25 catalysts with the assistance of ethanol. Int J Hydrog Energ 42(16):11372–11378

    Article  CAS  Google Scholar 

  29. Sarmiento B, Brey JJ, Viera IG, Gonzalez-Elipe AR, Cotrino J, Rico VJ (2007) Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge. J Power Sources 169(1):140–143

    Article  CAS  Google Scholar 

  30. Hu YP, Li GS, Yang YD, Gao XH, Lu ZH (2012) Hydrogen generation from hydro-ethanol reforming by DBD-plasma. Int J Hydrog Energy 37(1):1044–1047

    Article  CAS  Google Scholar 

  31. Chen FQ, Huang XY, Cheng D-G, Zhan XL (2014) Hydrogen production from alcohols and ethers via cold plasma: a review. Int J Hydrog Energy 39(17):9036–9046

    Article  CAS  Google Scholar 

  32. Zou J-J, Zhang Y-P, Liu C-J (2006) Reduction of supported noble-metal ions using glow discharge plasma. Langmuir 22(26):11388–11394

    Article  CAS  Google Scholar 

  33. Zhao X, Zhu H, Yang XR (2014) Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale 6:10680–10685

    Article  CAS  Google Scholar 

  34. Wollbrink A, Volgmann K, Koch J, Kanthasamy K, Tegenkamp C, Li Y, Richter H, Kämnitz S, Steinbach F, Feldhoff A, Caro J (2016) Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity. Carbon 106:93–105

    Article  CAS  Google Scholar 

  35. Ghosh SK, Nath S, Kundu S, Esumi K, Pal T (2004) Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B 108(37):13963–13971

    Article  CAS  Google Scholar 

  36. Bhatt S, Pulpytel J, Mori S, Mirshahi M, Arefi-Khonsari F (2014) Cell repellent coatings developed by an open air atmospheric pressure non-equilibrium argon plasma jet for biomedical applications. Plasma Process Polym 11(1):24–36

    Article  CAS  Google Scholar 

  37. Di LB, Zhang XL, Xu ZJ (2014) Preparation of copper nanoparticles using dielectric barrier discharge at atmospheric pressure and its mechanism. Plasma Sci Technol 16(1):41–44

    Article  Google Scholar 

  38. Du YJ, Tamura K, Moore S, Peng ZM, Nozaki T, Bruggeman PJ (2017) CO(B1∑+ → A1П) angstrom system for gas temperature measurements in CO2 containing plasmas. Plasma Chem Plasma Process 37:29–41

    Article  CAS  Google Scholar 

  39. Silva T, Britun N, Godfroid T, Snyders R (2014) Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Sci Technol 23(2):025009

    Article  Google Scholar 

  40. Di LB, Li XS, Zhao TL, Chang DL, Liu QQ, Zhu AM (2013) Tuning effect of N2 on atmospheric-pressure cold plasma CVD of TiO2 photocatalytic films. Plasma Sci Technol 15(1):64–69

    Article  Google Scholar 

  41. Zhang XL, Zhan ZB, Li Z, Di LB (2017) Thermal activation of CuBTC MOF for CO oxidation: the effect of activation atmosphere. Catalysts 7:106

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 11505019, 21673026), Dalian Youth Science and Technology Project (Grant No. 2015R089), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2015R1A4A1042434).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanbo Di or Dong-Wha Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, L., Zhang, X., Lee, B. et al. Feasibility of Atmospheric-Pressure CO Cold Plasma for Reduction of Supported Metal Ions. Plasma Chem Plasma Process 37, 1535–1549 (2017). https://doi.org/10.1007/s11090-017-9834-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9834-6

Keywords

Navigation