Skip to main content

Advertisement

Log in

Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A new NOx storage and reduction (NSR) system is developed for NOx removal by combining perovskite-like catalyst with nonthermal plasma technology. In this hybrid system, catalyst is mainly used for oxidizing NO to NO2 and storing them, while nonthermal plasma is applied as a desorption–reduction step for converting NOx into N2. An innovative catalyst with a high NOx storage capacity and good reduction performance is developed by successive impregnation. The catalysts prepared with various metal oxides were investigated for NOx storage capacity (NSC) and NOx conversion. Characterization of the catalysts prepared reveals that addition of cobalt (Co) and potassium (K) considerably increases the performance for NSC. Results also show that SrKMn0.8Co0.2O4 supported on BaO/Al2O3 has good NSC (209 μmol/gcatalyst) for the gas stream containing 500 ppm NO and 5 % O2 with N2 as carrier gas. For plasma reduction process, NOx conversion achieved with SrKMn0.8Co0.2O4/BaO/Al2O3 reaches 81 % with the applied voltage of 12 kV and frequency of 6 kHz in the absence of reducing agents. The results indicate that performance of plasma reduction process (81 %) is better than that of thermal reduction (64 %). Additionally, mixed gases including 1 % CO, 1 % H2 and 1 % CH4, and 2 % H2O(g) are simultaneously introduced into the system to investigate the effect on NSR with plasma system and results indicate that performance of NSR with plasma can be enhanced. Overall, the hybrid system is promising to be applied for removing NOx from gas streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bhatia D, McCabe RW, Harold MP, Balakotaiah V (2009) Experimental and kinetic study of NO oxidation on model Pt catalysts. J Catal 266:106–119

    Article  CAS  Google Scholar 

  • Chen XY, Schwank J, Li J, Schneider WF, Goralski CT, Schmitz PJ (2005) Thermal decomposition of dispersed and bulk-like NOx species in model NOx trap materials. Appl Catal B Environ 61:164–175

    Article  CAS  Google Scholar 

  • Erkfeldt S, Jobson E, Larsson M (2001) The effect of carbon monoxide and hydrocarbons on NOx storage at low temperature. Top Catal 16–17:127–131

    Article  Google Scholar 

  • Epling WS, Parks JE, Cambell GC, Yezerets A, Currier NW, Cambell LE (2004a) Further evidence of multiple NOx sorption sites on NOx storage/reduction catalysts. Catal Today 96:21–30

    Article  CAS  Google Scholar 

  • Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004b) Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal Rev Sci Eng 46:163–245

    Article  Google Scholar 

  • Hodjati S, Bernhardt P, Petit C, Pitchon V, Kiennemann A (1998) Removal of NOx: part I. Sorption/desorption processes on barium aluminate. Appl Catal B Environ 19:209–219

    Article  CAS  Google Scholar 

  • Hodjati S, Vaezzadeh K, Petit C, Pitchon V, Kiennemann A (2000a) NOx sorption-desorption study: application to diesel and lean-burn exhaust gas (selective NOx recirculation technique). Catal Today 59:323–334

    Article  CAS  Google Scholar 

  • Hodjati S, Vaezzadeh K, Petit C, Kiennemann A (2000b) Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas. Appl Catal B Environ 26:5–16

    Article  CAS  Google Scholar 

  • Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B Environ 9:25–64

    Article  CAS  Google Scholar 

  • Kim DH, Mudiyanselage K, Szanyi J, Kwak JH, Zhu H, Peden CHF (2013) Effect of K loadings on nitrate formation/decomposition and on NOx storage performance of K-based NOx storage-reduction catalysts. Appl Catal B Environ 142–143:472–478

    Article  Google Scholar 

  • Lesage T, Saussey J, Malo S, Hervieu M, Hedouin C, Blanchard G, Daturi M (2007) Operando FTIR study of NOx storage over a Pt/K/Mn/Al2O3-CeO2 catalyst. Appl Catal B Environ 72:166–177

    Article  CAS  Google Scholar 

  • Liu Y, Meng M, Zou ZQ, Li XG, Zha YQ (2008) In situ DRIFTS investigation on the NOx storage mechanisms over Pt/K/TiO2-ZrO2 catalyst. Catal Commun 10:173–177

    Article  CAS  Google Scholar 

  • Li Q, Meng M, Tsubaki N, Li X, Li Z (2009a) Performance of K-promoted hydrotalcite-derived CoMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot–NOx removal. Appl Catal B Environ 91:406–415

    Article  CAS  Google Scholar 

  • Li J, Goh WH, Yang X, Yang RT (2009b) Non-thermal plasma-assisted catalytic NOx storage over Pt/Ba/Al2O3 at low temperatures. Appl Catal B Environ 90:360–367

    Article  CAS  Google Scholar 

  • Liu G, Gao PX (2011) A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies. Catal Sci Technol 1:552–568

    Article  CAS  Google Scholar 

  • López-Suárez FE, Illán-Gómez MJ, Bueno-López A, James A (2011) NOx storage and reduction on a SrTiCuO3 perovskite catalyst studied by operando DRIFTS. Appl Catal B Environ 104:261–267

    Article  Google Scholar 

  • Le Phuc N, Courtois X, Can F, Royer S, Marecot P, Duprez D (2011a) NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO(Fe, Mn, Ce)/Al2O3 model catalysts. Part I: influence of Fe and Mn addition. Appl Catal B Environ 102:353–361

    Article  Google Scholar 

  • Le Phuc N, Courtois X, Can F, Royer S, Marecot P, Duprez D (2011b) NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO(Fe, Mn, Ce)/Al2O3 model catalysts. Part II: influence of Ce and Mn-Ce addition. Appl Catal B Environ 102:362–371

    Article  Google Scholar 

  • Li Q, Meng M, Dai F, Zha Y, Xie Y, Hu T, Zhang J (2012) Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot–NOx removal. Chem Eng J 184(2012):106–112

    Article  CAS  Google Scholar 

  • Roy S, Baiker A (2009) NOx storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance. Chem Rev 109:4054–4091

    Article  CAS  Google Scholar 

  • Shi C, Zhang ZC, Crocker M, Xu L, Wang CY, Au CY, Zhu AM (2013) Non-thermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst. Catal Today 211:96–103

    Article  CAS  Google Scholar 

  • Tofan C, Klvana D, Kirchnerova J (2002) Decomposition of nitric oxide over perovskite oxide catalysts: effect of CO2, H2O and CH4. Appl Catal B Environ 36:311–323

    Article  CAS  Google Scholar 

  • Takahara Y, Ikeda A, Nagata M, Sekine Y (2013) Low-temperature NO decomposition in humidified condition using plasma-catalyst system. Catal Today 211:44–52

    Article  CAS  Google Scholar 

  • Vijay R, Hendershot RJ, Rivera-Jiménez SM, Rogers WR, Feist BJ, Snively CM, Lauterbach J (2005) Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation. Catal Commun 6:167–171

    Article  CAS  Google Scholar 

  • Vijay R, Snively CM, Lauterbach J (2006) Performance of Co-containing NOx storage and reduction catalysts as a function of cycling condition. J Catal 243:368–375

    Article  CAS  Google Scholar 

  • Wang X, Yu Y, He H (2010) Effect of Co addition to Pt/Ba/Al2O3 system for NOx storage and reduction. Appl Catal B Environ 100(2010):19–30

    Article  CAS  Google Scholar 

  • Xu J, Harold MP, Balakotaiah V (2009) Microkinetic modeling of steady-state NO/H2/O2 on Pt/BaO/Al2O3 NOx storage and reduction monolith catalysts. Appl Catal B Environ 89:73–86

    Article  CAS  Google Scholar 

  • Yoshida K, Okubo M, Yamamoto T (2007) Distinction between nonthermal plasma and thermal desorptions for NOx and CO2. Appl Phys Lett 90:131501

    Article  Google Scholar 

  • Yu Q, Wang H, Liu T, Xiao L, Jiang X, Zhang X (2012) High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process. Environ Sci Technol 46:2337–2344

    Article  CAS  Google Scholar 

  • Yoshida K (2013) NOx aftertreatment by combined process using temperature swing adsorption, nonthermal plasma, and NOx recirculation: NOx removal accelerated by conversion of NO to NO2. J Taiwan Inst Chem Eng 44:1054–1059

    Article  CAS  Google Scholar 

  • You R, Zhang Y, Liu D, Meng M (2015) A series of ceria supported lean-burn NOx trap catalysts LaCoO3/K2CO3/CeO2 using perovskite as active component. Chem Eng J 260:357–367

    Article  CAS  Google Scholar 

  • Zhang AS, Chen BB, Wang XK, Xu L, Au C, Shi C, Crocker M (2015) NOx storage and reduction properties of model manganese-based lean NOx trap catalysts. Appl Catal B Environ 165:232–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the Ministry of Science and Technology, ROC (Grant No-102WFA0700516), and National Central University for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Been Chang.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H.H., Pan, K.L., Yu, S.J. et al. Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction. Environ Sci Pollut Res 23, 19590–19601 (2016). https://doi.org/10.1007/s11356-016-7114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7114-2

Keywords

Navigation