Skip to main content
Log in

Synthesis of Mixed-Phase TiO2 Nanopowders Using Atmospheric Pressure Plasma Jet Driven by Dual-Frequency Power Sources

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Mixed-phase TiO2 nanopowders with different ratios of anatase and rutile have been successfully synthesized using atmospheric pressure plasma jet driven by dual-frequency power sources. The crystal structures of the TiO2 nanopowders were characterized by X-ray diffraction, SAED, HRTEM, and Raman shift spectroscopy. These results indicated that samples possessed anatase and rutile structure, in addition, the crystallinity of the TiO2 nanopowders increased and the chlorine contamination decreased with discharge RF power increasing. The photocatalytic activity of the TiO2 nanopowders was evaluated by decomposition methylene blue solution. The TiO2 nanopowders which were produced at the discharge RF power of 110 W had the highest photocatalytic activity. Optical emission spectroscopy (OES) was used to detect various excited species in the plasma jet. The results indicate that the various RF power significantly changes the intensities of emission lines (Ar, Ar+, Ti, Ti+, Ti2+, Ti3+ and O), which results in the TiO2 nanopowders a mixture of anatase and rutile phases. The nonequilibrium chemical composition could be formed in one step without anneal. It may have potential applications for synthesizing nanosized particles of high crystallinity by reactive nonthermal plasma processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carpa O, Huismanb CL, Rellerb A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  Google Scholar 

  2. Liu G, Chen ZG, Dong CL, Zhao YN, Li F, Lu GQ, Cheng HM (2006) Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. J Phys Chem B 110:20823–20828

    Article  CAS  Google Scholar 

  3. Hurum DC, Gray KA (2005) Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem B 109:977–980

    Article  CAS  Google Scholar 

  4. Zachariah A, Baiju KV, Shukla S, Deepa KS, James J, Warrier KGK (2008) Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol–gel solvent mixing and calcination. J Phys Chem C 112:11345–11356

    Article  CAS  Google Scholar 

  5. Liu G, Yan XX, Chen ZG, Wang XW, Wang LZ, Lu GQ, Cheng HM (2009) Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis. J Mater Chem 19:6590–6596

    Article  CAS  Google Scholar 

  6. Mahshid S, Askari M, Ghamsari MS, Afshar N, Lahuti S (2009) Mixed-phase TiO2 nanoparticles preparation using sol–gel method. J Alloys Compd 478:586–589

    Article  CAS  Google Scholar 

  7. Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  CAS  Google Scholar 

  8. Chimupala Y, Hyett C, Simpson R, Brydson R (2014) Synthesis and characterization of a mixed phase of anatase TiO2 and TiO2(B) by low pressure chemical vapour deposition (LPCVD) for high photocatalytic activity. J Phys Conf Ser 522(1):012074

    Article  Google Scholar 

  9. Shi HM, Zhou M, Song DF, Pan XJ, Fu JC, Zhou JY, Ma SY, Wang T (2014) Highly porous SnO2/TiO2 electrospun nanofibers with high photocatalytic activities. Ceram Int 40:10383–10393

    Article  CAS  Google Scholar 

  10. Li YL, Ishigaki T (2004) Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J Phys Chem B 108:15536–15542

    Article  CAS  Google Scholar 

  11. Li JG, Kamiyama H, Wang XH, Moriyoshi Y, Ishigaki T (2006) TiO2 nanopowders via radio-frequency thermal plasma oxidation of organic liquid precursors: synthesis and characterization. J Eur Ceram Soc 26:423–428

    Article  CAS  Google Scholar 

  12. Ishigaki T, Li JG (2008) Synthesis of functional TiO2-based nanoparticles in radio frequency induction thermal plasma. Pure Appl Chem 80:1971–1979

    Article  CAS  Google Scholar 

  13. Tanaka Y, Sakai H, Tsuke T, Uesugi Y, Sakai Y, Nakamura K (2011) Influence of coil current modulation on TiO2 nanoparticle synthesis using pulse-modulated induction thermal plasmas. Thin Solid Films 519:7100–7105

    Article  CAS  Google Scholar 

  14. Liu SX, Li XS, Zhu X, Zhao TL, Zhu AM (2013) Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity. Plasma Chem Plasma Process 33:827–838

    Article  Google Scholar 

  15. Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) Deposition of silicon dioxide films with an atmospheric-pressure plasma jet. Plasma Sources Sci Technol 7:286–288

    Article  Google Scholar 

  16. Zhang XL, Nie LH, Xu Y, Shi C, Yang XF, Zhu AM (2007) Plasma oxidation for achieving supported TiO2 photocatalysts derived from adsorbed TiCl4 using dielectric barrier discharge. J Phys D Appl Phys 4:1763–1768

    Article  Google Scholar 

  17. Hajkova P, Spatenka P, Krumeich J (2009) The influence of surface treatment on photocatalytic activity of PE CVD TiO2 thin films. Plasma Process Polym 6:s735–s740

    Article  CAS  Google Scholar 

  18. Seo H, Elliott CM, Shin H (2010) Mesoporous TiO2 films fabricated using atmospheric pressure dielectric barrier discharge jet. ACS Appl Mater Interfaces 2:3397–3400

    Article  CAS  Google Scholar 

  19. Nie LH, Shi C, Xu Y, Wu QH, Zhu AM (2007) Atmospheric cold plasmas for synthesizing nanocrystalline anatase TiO2 using dielectric barrier discharges. Plasma Process Polym 4:574–582

    Article  CAS  Google Scholar 

  20. Di LB, Li XS, Shi C, Xu Y, Zhao DZ, Zhu AM (2009) Atmospheric-pressure plasma CVD of TiO2 photocatalytic films using surface dielectric barrier discharge. J Phys D Appl Phys 42:032001

    Article  Google Scholar 

  21. Mathews NR, Morales ER, Jacome MAC, Antonio JAT (2009) TiO2 thin films—influence of annealing temperature on structural, optical and photocatalytic properties. Sol Energy 83:1499–1508

    Article  CAS  Google Scholar 

  22. Huang JH, Wong MS (2011) Structures and properties of titania thin films annealed under different atmosphere. Thin Solid Films 520:1379–1384

    Article  CAS  Google Scholar 

  23. Kim DB, Moon SY, Jung H, Gweon B, Choe W (2010) Study of a dual frequency atmospheric pressure corona plasma. Phys Plasmas 17:053508

    Article  Google Scholar 

  24. Zhou YJ, Yuan QH, Li F, Wang XM, Yin GQ, Dong CZ (2013) Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources. Phys Plasmas 20:113502

    Article  Google Scholar 

  25. Kment S, Kluson P, Zabova H, Churpita A (2009) Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO2 thin coatings on various surfaces. Surf Coat Technol 204:667–675

    Article  CAS  Google Scholar 

  26. Xia B, Li WB, Zhang B, Xie YC (1999) Low temperature vapor-phase preparation of TiO2 nanopowders. J Mater Sci 34:3505–3511

    Article  CAS  Google Scholar 

  27. Ohsaka T, Izumi F, Fujiki F (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324

    Article  Google Scholar 

  28. Chen XF, Wang XC, Hou YD, Huang JH, Wu L, Fu XZ (2008) The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation. J Catal 255:59–67

    Article  CAS  Google Scholar 

  29. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Santo VD (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603

    Article  CAS  Google Scholar 

  30. Gupta SK, Desai R, Jha PK, Sahoo S, Kirin D (2010) Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J Raman Spectrosc 41:350–355

    CAS  Google Scholar 

  31. Karches M, Morstein M, Rohr PRV (2002) Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catal Today 72:267–279

    Article  CAS  Google Scholar 

  32. NIST database, http://www.nist.gov

  33. Yanguas-Gil Focke K, Benedikt J, von Keudell A (2007) Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar/CH4 and Ar/C2H2 mixtures. J Appl Phys 101:103307

    Article  Google Scholar 

  34. Lopez J, Zhu W, Freilich A, Belkind A, Becker K (2005) Time-resolved optical emission spectroscopy of pulsed DC magnetron sputtering plasmas. J Phys D Appl Phys 38:1769

    Article  CAS  Google Scholar 

  35. Mericam-Bourdet N, Laroussi M, Begum A, Karakas E (2009) Experimental investigations of plasma bullets. J Phys D Appl Phys 42:055207

    Article  Google Scholar 

  36. NikiforovA Y, Sarani A, Leys C (2011) The influence of water vapor content on electrical and spectral properties of an atmospheric pressure plasma jet. Plasma Sources Sci Technol 20:015014

    Article  Google Scholar 

  37. Nakano T, Kumagai S, Samukawa S (2002) Estimation of dissociation degree of N2 in an inductively coupled plasma by vacuum ultraviolet emission spectroscopy. J Appl Phys 92:2990

    Article  CAS  Google Scholar 

  38. Chang DL, Li XS, Zhao TL, Yang JH, Zhu AM (2012) Non-thermal effect of atmospheric-pressure RF cold plasma on photocatalytic activity of as-deposited TiO2 film. Chem Vap Depos 18:121–125

    Article  CAS  Google Scholar 

  39. Shibata A, Okimura K, Yamamoto Y, Matubara K (1993) Effect of heating probe on reactively sputtered TiO2 film growth Japan. J Appl Phys 32:5666–5670

    Article  CAS  Google Scholar 

  40. Safeen K, Micheli V, Bartali R, Gottardi G, Laidani N (2015) Low temperature growth study of nano-crystalline TiO2 thin films deposited by RF sputtering. J Phys D Appl Phys 48:295201

    Article  Google Scholar 

  41. Chung CJ et al (2009) Growth behavior and microstructure of arc ion plated titanium dioxide. Surf Coat Technol 204:915–922

    Article  CAS  Google Scholar 

  42. Bournet CS, Charles C, Boswell R (2011) Low temperature growth of nanocrystalline TiO2 films with Ar/O2 low-field helicon plasma. Surf Coat Technol 205:3939–3946

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by Project of Natural Science Foundation of China (11665021, 11165012), Project of Natural Science Foundation of Gansu Province(145RJZA159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqin Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yuan, Q., Yin, G. et al. Synthesis of Mixed-Phase TiO2 Nanopowders Using Atmospheric Pressure Plasma Jet Driven by Dual-Frequency Power Sources. Plasma Chem Plasma Process 36, 1471–1484 (2016). https://doi.org/10.1007/s11090-016-9746-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9746-x

Keywords

Navigation