Skip to main content
Log in

Gliding Arc Plasma Synthesis of Crystalline TiO2 Nanopowders with High Photocatalytic Activity

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A warm plasma generated by gliding arc discharge, combining the advantages of both thermal and cold plasmas, is explored to synthesize TiO2 nanopowders for the first time. Air is used as the discharge gas and titanium tetraisopropoxide aerosol is carried by N2 into the plasma. X-ray diffraction and X-ray photoelectron spectroscopy characterizations confirm that the as-synthesized nanopowders are fully crystalline TiO2. The weight fraction of anatase (f A) is higher than that of rutile and increases from 68.8 to 96.8 % by increasing specific energy input (SEI) from 46 to 76 kJ/mol. The effect of SEI on specific surface area (S BET) and BET-equivalent diameter (d BET) of the nanopowders is investigated. The typically spheric morphology of the particles is observed by transmission electron microscopy (TEM) and the most probable d TEM approaches the d BET. All the as-synthesized nanopowders show a high photocatalytic activity comparable to that of Degussa P25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Muneer M, Bahnemann D (2002) Appl Catal B Environ 36:95–111

    Article  CAS  Google Scholar 

  2. Tomkiewicz M (2000) Catal Today 58:115–123

    Article  CAS  Google Scholar 

  3. Macwan DP, Dave PN, Chaturvedi S (2011) J Mater Sci 46:3669–3686

    Article  CAS  Google Scholar 

  4. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  5. Nakata K, Fujishima A (2012) J Photochem Photobiol C Photochem Rev 13:169–189

    Article  CAS  Google Scholar 

  6. Jiang JK, Chen DR, Biswas P (2007) Nanotechnology 18:285603

    Article  Google Scholar 

  7. Oh SM, Park DW (2001) Thin Solid Films 386:233–238

    Article  CAS  Google Scholar 

  8. Tsai CY, Hsi HC, Bai H, Fan KS, Chen C (2011) J Nanopart Res 13:4739–4748

    Article  CAS  Google Scholar 

  9. Li YL, Ishigaki T (2004) J Phys Chem B 108:15536–15542

    Article  CAS  Google Scholar 

  10. Li J, Ikeda M, Ye R, Moriyoshi Y, Ishigaki T (2007) J Phys D Appl Phys 40:2348

    Article  CAS  Google Scholar 

  11. Li JG, Büchel R, Isobe M, Mori T, Ishigaki T (2009) J Phys Chem C 113:8009–8015

    Article  CAS  Google Scholar 

  12. Oh SM, Ishigaki T (2004) Thin Solid Films 457:186–191

    Article  CAS  Google Scholar 

  13. Li JG, Kamiyama H, Wang XH, Moriyoshi Y, Ishigaki T (2006) J Eur Ceram Soc 26:423–428

    Article  CAS  Google Scholar 

  14. Ishigaki T, Li JG (2008) Pure Appl Chem 80:1971–1979

    Article  CAS  Google Scholar 

  15. Tanaka Y, Sakai H, Tsuke T, Uesugi Y, Sakai Y, Nakamura K (2011) Thin Solid Films 519:7100–7105

    Article  CAS  Google Scholar 

  16. Hu P, Yuan FL, Bai LY, Li JL, Chen YF (2007) J Phys Chem C 111:194–200

    Article  Google Scholar 

  17. Hong YC, Uhm HS (2007) Jpn J Appl Phys 46:6027–6031

    Article  CAS  Google Scholar 

  18. Li MW, Gonzalez-Aguilar J, Fulcheri L (2008) Jpn J Appl Phys 47:7343–7345

    Article  CAS  Google Scholar 

  19. Chen CC, Bai HL, Chein HM, Chen TM (2007) Aerosol Sci Technol 41:1018–1028

    Article  CAS  Google Scholar 

  20. Nie LH, Shi C, Xu Y, Wu OH, Zhu AM (2007) Plasma Process Polym 4:574–582

    Article  CAS  Google Scholar 

  21. Seo JH, Hong BG (2012) Nucl Eng Technol 44:9–20

    Article  CAS  Google Scholar 

  22. Gangoli SP, Gutsol AF, Fridman AA (2010) Plasma Sources Sci Technol 19:065004

    Article  Google Scholar 

  23. Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O (1999) Prog Energy Combust Sci 25:211–231

    Article  CAS  Google Scholar 

  24. Kalra CS, Cho YI, Gutsol A, Fridman A, Rufael TS (2005) Rev Sci Instrum 76:025110

    Article  Google Scholar 

  25. Spurr RA, Myers H (1957) Anal Chem 29:760–762

    Article  CAS  Google Scholar 

  26. Li YL, Ishigaki T (2002) J Cryst Growth 242:511–516

    Article  CAS  Google Scholar 

  27. Zhang JD, Fung S, Lin L-B, Liao Z-J (2002) Surf Coat Technol 158:238–241

    Article  Google Scholar 

  28. Cho CR, Kim JP, Hwang JY, Jeong SY, Joh YG, Kim DH (2004) Jpn J Appl Phys 43:L1323–L1326

    Article  Google Scholar 

  29. Kuznetsov MV, Zhuravlev JF, Gubanov VA (1992) J Electron Spectrosc Relat Phenom 58:169–176

    Article  CAS  Google Scholar 

  30. Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  31. Randeniya LK, Bendavid A, Martin PJ, Preston EW (2007) J Phys Chem C 111:18334–18340

    Article  CAS  Google Scholar 

  32. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) J Photochem Photobiol A Chem 216:179–182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51077009, U1201231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Min Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SX., Li, XS., Zhu, X. et al. Gliding Arc Plasma Synthesis of Crystalline TiO2 Nanopowders with High Photocatalytic Activity. Plasma Chem Plasma Process 33, 827–838 (2013). https://doi.org/10.1007/s11090-013-9470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9470-8

Keywords

Navigation