Skip to main content
Log in

MnOx/TiO2 Catalysts for VOCs Abatement by Coupling Non-thermal Plasma and Photocatalysis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Mn3O4 with different particle sizes was prepared and mixed with titanium oxide to prepare catalytic systems. Those systems were characterized and then used for ethanol removal from air. Commercial β-MnO2 was also used for comparison. Prepared solids were characterized by X-ray Diffraction, N2-physisorption, Raman, Scanning Electron Microscopy and Photoluminescence. MnOx/TiO2 catalysts were tested in the ethanol oxidation reaction (at low concentration: 30 ppm) under ultraviolet light and under non-thermal plasma (Espe = 14 J L−1). The combination of those both technologies was also tested. This study shows that the combination of photocatalysis and non-thermal plasma enhances significantly the oxidation of ethanol. Indeed, very high ethanol conversion rate was obtained with an important carbon dioxide selectivity and low residual ozone concentration. Besides, well dispersed nanoparticles of Mn3O4 are more efficient than β-MnO2 microparticles in the minimization of undesirable byproduct. Actually, under combined ultraviolet light and non-thermal plasma the O3 activation seems to be more efficient on Mn3O4, which additionally enhances the ethanol decomposition and the CO2 selectivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kampa M, Castanas E (2008) Environ Pollut 151:362–367

    Article  CAS  Google Scholar 

  2. Lee KY, Huang YJ (2014) Appl Catal B Environ 150–151:506–514

    Article  Google Scholar 

  3. Wang S, Ang HM, Tade MO (2007) Environ Int 33:694–705

    Article  CAS  Google Scholar 

  4. Urashima K (2000) IEEE Trans Dielectr Electr Insul 7:602–614

    Article  CAS  Google Scholar 

  5. Harling AM, Glover DJ, Whitehead JC, Zhang K (2008) Environ Sci Technol 42:4546–4550

    Article  CAS  Google Scholar 

  6. Subrahmanyam C, Magureanu M, Renken A, Kiwi-Minsker L (2006) Appl Catal B Environ 65:150–156

    Article  CAS  Google Scholar 

  7. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  8. Kim H-H (2004) Plasma Process Polym 1:91–110

    Article  Google Scholar 

  9. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Spectrochim Acta—Part B At. Spectrosc 61:2–30

    Article  Google Scholar 

  10. Eliasson B, Hirth M, Kogelschatz U (2000) J Phys D Appl Phys 20:1421–1437

    Article  Google Scholar 

  11. Müller S, Zahn R-J (2007) Contrib Plasma Phys 47:520–529

    Article  Google Scholar 

  12. Tang X-L, Gao F-Y, Wang J-G, Yi H-H, Zhao S-Z, Zhang B-W, Zuo Y-R, Wang Z-X (2014) Ind Eng Chem Res 53:6197–6203

    Article  CAS  Google Scholar 

  13. Ye Z, Zhao J, Huang HY, Ma F, Zhang R (2013) J Hazard Mater 260:32–39

    Article  CAS  Google Scholar 

  14. Xia L, Huang L, Shu X, Zhang R, Dong W, Hou H (2008) J Hazard Mater 152:113–119

    Article  CAS  Google Scholar 

  15. Obradović BM, Sretenović GB, Kuraica MM (2011) J Hazard Mater 185:1280–1286

    Article  Google Scholar 

  16. Roland U, Holzer F, Kopinke FD (2002) Catal Today 73:315–323

    Article  CAS  Google Scholar 

  17. Xiao G, Xu W, Wu R, Ni M, Du C, Gao X, Luo Z, Cen K (2014) Plasma Chem Plasma Process 34:1033–1065

    Article  CAS  Google Scholar 

  18. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324–333

    Article  Google Scholar 

  19. Assadi AA, Bouzaza A, Vallet C, Wolbert D (2014) Chem Eng J 254:124–132

    Article  CAS  Google Scholar 

  20. Ayrault C, Barrault J, Blin-simiand N, Jorand F, Pasquiers S, Rousseau A, Tatibouët J-M (2004) Catal Today 89:75–81

    Article  CAS  Google Scholar 

  21. Maciuca A, Batiot-Dupeyrat C, Tatibouët JM (2012) Appl Catal B Environ 125:432–438

    Article  CAS  Google Scholar 

  22. Maciuca A, Batiot-Dupeyrat C, Tatibouët J (2012) Int J Plasma Environ Sci Technol 6:135–139

    Google Scholar 

  23. Dhaouadi H, Ghodbane O, Hosni F, Touati F (2012) ISRN Spectrosc 2012:1–8

    Article  Google Scholar 

  24. Dhaouadi H, Madani A, Touati F (2010) Mater Lett 64:2395–2398

    Article  CAS  Google Scholar 

  25. Manley TC (1943) Trans Electrochem Soc 16:83–96

    Article  Google Scholar 

  26. Wang D, Li Y, Wang Q, Wang T (2012) Eur J Inorg Chem 2012:628–635

    Article  CAS  Google Scholar 

  27. Zhou T, Mo S, Zhou S, Zou W, Liu Y, Yuan D (2011) J Mater Sci 46:3337–3342

    Article  CAS  Google Scholar 

  28. Cai Z, Xu L, Yan M, Han C, He L, Hercule KM, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L (2015) Nano Lett 15:738–744

    Article  CAS  Google Scholar 

  29. Gao T, Fjellvåg H, Norby P (2009) Anal Chim Acta 648:235–239

    Article  CAS  Google Scholar 

  30. Julien CM, Massot M (2003) J Phys Condens Matter 15:3151–3162

    Article  CAS  Google Scholar 

  31. Julien C, Massot M, Poinsignon C (2004) Spectrochim Acta Part A Mol Biomol Spectrosc 60:689–700

    Article  CAS  Google Scholar 

  32. Zhao Q, Wu P, Li BL, Lu ZM, Jiang EY (2008) J Appl Phys 104:2–7

    Google Scholar 

  33. Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Fedorenko L, Kshnyakin V (2013) J Nano-Electron Phys 5:1–7

    Google Scholar 

  34. Lei Y, Zhang LD, Meng GW, Li GH, Zhang XY, Liang CH, Chen W, Wang SX (2001) Appl Phys Lett 78:1999–2002

    Article  Google Scholar 

  35. Wang Y, He Y, Lai Q, Fan M (2014) J Environ Sci 26:2139–2177

    Article  Google Scholar 

  36. Lamaita L, Peluso MA, Sambeth JE, Thomas HJ (2005) Appl Catal B Environ 61:114–119

    Article  CAS  Google Scholar 

  37. Peluso MA, Sambeth JE, Thomas HJ, Peluso Miguel A, Sambeth Jorge E, Thomas HJ (2003) React Kinet Catal Lett 80:241–248

    Article  CAS  Google Scholar 

  38. Wei L, Oyama ST (1997) Studies Surf Sci Catal 110:873–882

    Article  Google Scholar 

  39. Li W, Gibbs GV, Oyama ST, April RV (1998) J Am Chem Soc 120:9041–9046

    Article  CAS  Google Scholar 

  40. Guo Y, Liao X, He J, Ou W, Ye D (2010) Catal Today 153:176–183

    Article  CAS  Google Scholar 

  41. Jarrige J, Vervisch P (2009) Appl Catal B Environ 90:74–82

    Article  CAS  Google Scholar 

  42. Einaga H, Ibusuki T, Futamura S (2001) IEEE Trans Ind Appl 37:1476–1482

    Article  CAS  Google Scholar 

  43. Li Y, Fan Z, Shi J, Liu Z, Shangguan W (2014) Chem Eng J 241:251–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Tunisian Ministry of High Education, Scientific Research and Technology for the Ph.D. mobility grant of Imen Aouadi, Houcine Touati for efficient help in plasma experiments and Dr. Mehrez Hermassi for SEM images achieving.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bergaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouadi, I., Tatibouët, JM. & Bergaoui, L. MnOx/TiO2 Catalysts for VOCs Abatement by Coupling Non-thermal Plasma and Photocatalysis. Plasma Chem Plasma Process 36, 1485–1499 (2016). https://doi.org/10.1007/s11090-016-9740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9740-3

Keywords

Navigation