Skip to main content
Log in

Synthesis, Characterization and Photocatalytic Application of TiO2/SnO2 Nanocomposite Obtained Under Non-thermal Plasma Condition at Atmospheric Pressure

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A plasma-assisted synthesis of TiO2/SnO2 nanocomposite is described. In this approach, a precursor containing a mixture of [TiCl3 and SnCl2] exposed to electric discharge was oxidized by plasma-generated reactive species (HO·/H2O = 2.85 eV/SHE). SnO2 microstructures with a diameter of 10–40 µm were coated by thin layers TiO2 nanorods with mean diameter of 6–8 nm. The obtained TiO2/SnO2 nanocomposite was characterized by transmission and scanning electron microscopy, X-ray diffraction and Fourier transform infrared. TiO2/SnO2 nanocomposite was found to be a promising new material for the photocatalytic discoloration of aqueous Remazol Brilliant Blue-R dye under daylight and UVA light sources, due to the combined effects of large specific surface area and heterojunction which efficiently separates the electron–hole pairs delaying the charge recombination. The leaching test indicated that the nanocomposite is stable easily reusable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hessel C, Allegre C, Maisseu M, Charbit F, Moulin P (2007) Guidelines and legislation for dye house effluents. J Environ Manage 83:171–180

    Article  CAS  Google Scholar 

  2. da Silva LG, Ruggiero R, Gontijo PM, Pinto RB, Royer B, Lima EC, Fernandes THM, Calvete T (2011) Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modified sugarcane bagasse lignin. Chem Eng J 168:620–628

    Article  Google Scholar 

  3. Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LAA, Calvete T (2012) Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater 241–242:146–153

    Article  Google Scholar 

  4. Royer B, Cardoso NF, Lima EC, Macedo TR, Airoldi C (2010) A useful organofunctionalized layered silicate for textile dye removal. J Hazard Mater 181:366–374

    Article  CAS  Google Scholar 

  5. Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J Hazard Mater 174:694–699

    Article  CAS  Google Scholar 

  6. Kariyajjanavar P, Narayana J, Arthoba Nayaka Y (2013) Degradation of textile dye C.I. Vat Black 27 by electrochemical method by using carbon electrodes. J Environ Chem Eng 1:975–980

    Article  CAS  Google Scholar 

  7. Liu Y, Tian H, Si A (2012) Gliding arc discharge for decolorization and biodegradability of azo dyes and printing and dyeing wastewater. Plasma Chem Plasma Process 32:597–607

    Article  Google Scholar 

  8. Peng J, Lee S (2013) Atmospheric pressure plasma degradation of azo dyes in water: pH and structural effects. Plasma Chem Plasma Process 33:1063–1072

    Article  CAS  Google Scholar 

  9. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572

    Article  CAS  Google Scholar 

  10. Waseem Raz MM, Haque M, Muneer M, Fleisch A, Hakki D (2015) Bahnemann, Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped TiO2 hybrid carbon spheres. J Alloys Compd 632:837–844

    Article  Google Scholar 

  11. Qamar M, Merzougui B, Anjum D, Hakeem AS, Yamani ZH, Bahnemann D (2014) Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide. Catal Today 230:158–165

    Article  CAS  Google Scholar 

  12. Manassero A, Satuf ML, Alfano OM (2013) Evaluation of UV and visible light activity of TiO2 catalysts for water remediation. Chem Eng J 225:378–386

    Article  CAS  Google Scholar 

  13. Suryawanshi A, Dhanasekaran P, Mhamane D, Kelkar S, Patil S, Gupta N et al (2012) Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: electronic and morphological effects. Int J Hydrogen Energy 37:9584–9589

    Article  CAS  Google Scholar 

  14. Cheng N, Tian J, Liu Q, Ge C, Qusti AH, Asiri AM et al (2013) Au-nanoparticle loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl Mater Interfaces 5:6815–6819

    Article  CAS  Google Scholar 

  15. Ismail AA, Bahnemann DW, Al-Sayari SA (2012) Synthesis and photocatalytic properties of nanocrystalline Au, Pd and Pt photodeposited onto mesoporous RuO2–TiO2 nanocomposites. Appl Catal A Gen 431–432:62–68

    Article  Google Scholar 

  16. Chun H, Yizhong W, Hongxiao T (2001) Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes. Appl Catal B Environ 30:277–285

    Article  CAS  Google Scholar 

  17. Acayanka E, Tiya Djowe A, Laminsi S, Tchoumkwe CC, Nzali S, Poupi Mbouopda A, Ndifon PT, Gaigneaux EM (2013) Plasma-assisted synthesis of TiO2 nanorods by gliding arc discharge processing at atmospheric pressure for photocatalytic applications. Plasma Chem Plasma Process 33:725–735

    Article  CAS  Google Scholar 

  18. Czernichowski A (1994) Gliding arc: application to engineering and environmental control. Pure Appl Chem 66:1301–1310

    Article  CAS  Google Scholar 

  19. Fridman AA, Petrousov A, Chapelle J, Cornier JM, Czernichowski A, Lessueur H, Stevefelt J (1994) Modèle physique de l’arc glissant. J Phys III 4:1449–1465

    CAS  Google Scholar 

  20. Benstaali B, Moussa D, Addou A, Brisset JL (1998) Plasma treatment of aqueous solutes: some chemical properties of gliding arc in humid air. Eur Phys J Appl Phys 4:171–179

    Article  CAS  Google Scholar 

  21. Brethes-Dupouey S, Peyrous R, Held B (2000) Removal of H2S in air by using gliding arc discharges. Eur Phys J Appl Phys 11:43–58

    Article  CAS  Google Scholar 

  22. Abdelmalek FS, Gharbi S, Benstaali B, Addou A, Brisset JL (2004) Plasmachemical degradation of azo dyes by humid air plasma: yellow supranol 4 GL, scarlet red nylosan F3 GL and industrial waste. Water Res 38:2339–2347

    Article  CAS  Google Scholar 

  23. Burlica R, Kirpatrick MJ, Locke BR (2006) Formation of reactive species in gliding arc discharges with liquid water. J Electrostat 64:35–43

    Article  CAS  Google Scholar 

  24. Doubla A, Laminsi S, Nzali S, Njoyin E, Kamsu-kom J, Brisset JL (2007) Organic pollutants abatement and biodecontamination of brewry effluents by a non-thermal quenched plasma at atmospheric pressure. Chemosphere 69:332–337

    Article  CAS  Google Scholar 

  25. Benstaali B, Boubert P, Cheron B, Addou A, Brisset JL (2002) Density and rotational temperature measurements of the NO° and OH° radicals produced by a gliding arc in humid air and their interaction with aqueous solutions. Plasma Chem Plasma Process 22:553–571

    Article  CAS  Google Scholar 

  26. Brisset JL, Hnatiuc E (2012) Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solution. Plasma Chem Plasma Process 32:655–674

    Article  CAS  Google Scholar 

  27. Brisset JL, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Kamgang YG, Herry JM, Bellon-Fontaine NM (2008) Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: examples of gliding arc discharge treated solutions. Ind Eng Chem Res 47:5761–5781

    Article  CAS  Google Scholar 

  28. Brisset JL, Pawlat J (2015) Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chem Plasma Process. doi:10.1007/s11090-015-9653-6

    Google Scholar 

  29. Hnatiuc E (2002) Procédés électriques de mesure et de traitement des polluants. Tech & Doc, Lavoisier, Paris

    Google Scholar 

  30. Djakaou I, Ghezzar RM, Zekri ME, Abdelmalek F, Cavadias S, Ognier S (2015) Removal of model pollutants in aqueous solution by gliding arc discharge. Part II: modeling and simulation study. Plasma Chem Plasma Process 35:143–157

    Article  CAS  Google Scholar 

  31. Laminsi S, Acayanka E, Nzali S, Ndifon PT, Brisset JL (2012) Direct impact and delayed post-discharge chemical reactions of FeII complexes induced by non-thermal plasma. Deswater 37:38–45

    CAS  Google Scholar 

  32. Acayanka E, Laminsi S, Ndifon PT, Sop TB, Brisset JL (2013) Degradation of dithizone by non thermal quenched plasma of gliding arc type. J Adv Oxid Technol 16:188–197

    CAS  Google Scholar 

  33. Abia D, Nzali S, Acayanka E, Kamgang GY, Laminsi S, Ghogomu PM (2015) Synergetic effect of gliding arc discharge treatment and biosorption for removal of nitrophene and glycine from aqueous solution. J Ind Eng Chem 29:156–162

    Article  CAS  Google Scholar 

  34. Djowe AT, Acayanka E, Lontio-Nkouongfo RG, Laminsi S, Gaigneaux EM (2015) Enhanced discolouration of Methyl Violet 10B in a gliding arc plasma reactor by the maghemite nanoparticles used as heterogeneous catalyst. J Environ Chem Eng 3:953–960

    Article  Google Scholar 

  35. Laminsi S, Acayanka E, Ndifon PT, Tiya AD, Brisset JL (2012) plasmachemical dissociation and degradation of naphtol green B complex. Environ Eng Manag J 11:18–21

    Google Scholar 

  36. Tiya-Djowe A, Laminsi S, Noupeyi GL, Gaigneaux EM (2015) Non-thermal plasma synthesis of sea-urchin like α-FeOOH for the catalytic oxidation of Orange II in aqueous solution. Appl Catal B Environ 176:99–106

    Article  Google Scholar 

  37. Yu J, Zhao X, Zhao Q (2000) Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method. Thin Solid Films 379:7–14

    Article  CAS  Google Scholar 

  38. Jensen H, Soloviev A, Li Z, Sogaard EG (2005) XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Appl Surf Sci 246:239–249

    Article  CAS  Google Scholar 

  39. Yu J, Su Y, Cheng B, Zhou M (2006) Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. J Mol Catal A 258:104–112

    Article  CAS  Google Scholar 

  40. Quan L, Xundao Y, Guangfu Z, Shiquan X (1997) Study on the microstructure and properties of nanosized stannic oxide powder. Mater Chem Phys 47:239–245

    Article  Google Scholar 

  41. Radheshyam R, Senguttuvan TD, Lakshmikumar ST (2006) Study of the electric and optical bonding properties of doped SnO2. Comput Mater Sci 37:15–19

    Article  Google Scholar 

  42. Mountapmbeme-Kouotou P, Laminsi S, Acayanka E, Brisset JL (2013) Degradation of palm oil refinery wastewaters by non-thermal gliding arc discharge at atmospheric pressure. Environ Monit Assess 185:5789–5800

    Article  CAS  Google Scholar 

  43. Liu Y, Xu H, Zhu S, Zhou M, Miao J (2014) Enhanced degradation of Acid Orange 7 solution by non-thermal plasma discharge with TiO2. Plasma Chem Plasma Process 34:1403–1413

    Article  CAS  Google Scholar 

  44. Saïm N, Ghezzar MR, Guyon C, Abdelmalek F, Tatoulian M, Addou A (2015) New prototype for the treatment of falling film liquid effluents by gliding arc discharge part II: plasmacatalytic activity of TiO2 thin film deposited by magnetron Sputterin. Chem Eng Process 98:32–40

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the International Foundation for Sciences (IFS) for a JENWAY spectrophotometer offered to S.N., Special thanks are also addressed to the emeritus Professor Jean-Louis Brisset of Rouen University (France) for a Plasma reactor support and to the professor Eder C. Lima of Federal University of Rio Grande do Sul—UFRGS (Brazil) for some of the reagents used in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elie Acayanka or Samuel Laminsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acayanka, E., kuete, D.S., Kamgang, G.Y. et al. Synthesis, Characterization and Photocatalytic Application of TiO2/SnO2 Nanocomposite Obtained Under Non-thermal Plasma Condition at Atmospheric Pressure. Plasma Chem Plasma Process 36, 799–811 (2016). https://doi.org/10.1007/s11090-016-9699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9699-0

Keywords

Navigation