Skip to main content

Advertisement

Log in

Decomposition of Ethanethiol Using Dielectric Barrier Discharge Combined with 185 nm UV-Light Technique

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The removal of gaseous ethanethiol (EtSH) via dielectric barrier discharge (DBD) combined with 185 nm UV-light energized by a DBD power supply has been investigated. EtSH removal efficiency and energy yield had been examined as a function of EtSH initial concentration, input power, gas flow rate and relative humidity of gas flow. The results showed that DBD combined with 185 nm UV-light could improve EtSH removal efficiency by about 10.4 % and increase energy yield by 0.4 g (kWh)−1 as compared with DBD treatment only. When increasing initial EtSH concentration and flow rate, a higher energy yield was obtained. And EtSH removal efficiency increased as the relative humidity increased to about 70 %, then decreased when the humidity continue to increase. Moreover, the possible reaction pathways were proposed based on the products identified by FT-IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An TC, Wan SG, Li GY, Sun L, Guo B (2010) Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. J Hazard Mater 183:372–380

    Article  CAS  Google Scholar 

  2. Sedighi M, Vahabzadeh F, Zamir SM, Naderifar A (2013) Ethanethiol degradation by Ralstonia eutropha. Biotechnol Bioproc E 18:827–833

    Article  CAS  Google Scholar 

  3. Ma XJ, Wu ZC, Zhou MH, Ding JF (2013) Electrochemical scission of C–S bond in ethanethiol on amodified β-PbO2 anode in aqueous solution. Sep Purif Technol 109:72–76

    Article  CAS  Google Scholar 

  4. Montebello AM, Fernandez M, Almenglo F, Ramirez M, Cantero D, Baeza M, Gabriel D (2012) Simultaneous methylemercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chem Eng J 200:237–246

    Article  Google Scholar 

  5. Jahanmiri A, Rahimpour MR, Mohamadzadeh Shirazi M, Hooshmand N, Taghvaei H (2012) Naphtha cracking through a pulsed DBD plasma reactor: effect of applied voltage, pulse repetition frequency and electrode material. Chem Eng J 191:416–425

    Article  CAS  Google Scholar 

  6. Xia LY, Huang L, Shu XH, Zhang RX, Dong WB, Hou HQ (2008) Removal of ammonia from gas streams with dielectric barrier discharge plasmas. J Hazard Mater 152:113–119

    Article  CAS  Google Scholar 

  7. Zhu CZ, Lu J, Wang XH, Huang Q, Huang L, Wang JQ (2013) Removal of Carbon disulfide from gas streams using dielectric barrier discharge plasma coupled with MnO2 catalysis system. Plasma Chem Plasma Process 33:569–579

    Article  CAS  Google Scholar 

  8. Kirkpatrick MJ, Odic E, Zinola S, Lavy J (2012) Plasma assisted heterogeneous catalytic oxidation: HCCI diesel engine investigations. Appl Catal B 117:1–9

    Article  Google Scholar 

  9. Janus HW, Halenka J, Biedrzycki K (2014) Dielectric barrier discharge at the triglycine sulfate crystal surface: the role of the electric field of the domain structure. J Phys D Appl Phys 47:305202

    Article  Google Scholar 

  10. Huang HB, Ye DQ (2009) Combination of photocatalysis downstream the nonthermal plasma reactor for oxidation of gas-phase toluene. J Hazard Mater 171:535–541

    Article  CAS  Google Scholar 

  11. Liang W, Li J, Li J, Jin Y (2009) Abatement of toluene from gas streams via ferroelectric packed bed dielectric barrier discharge plasma. J Hazard Mater 170:633–638

    Article  CAS  Google Scholar 

  12. Shang KF, Wu Y, Li J, Li GF, Li D, Wang NH (2006) Reduction of NOx/SO2 by wireplate type pulsed discharge reactor with pulsed corona radical shower. Plasma Chem Plasma Process 26:443–454

    Article  CAS  Google Scholar 

  13. Huang L, Xia LY, Dong WB, Hou HQ (2013) Energy efficiency in hydrogen sulfide removal by non-thermal plasma photolysis technique at atmospheric pressure. Chem Eng J 228:1066–1073

    Article  CAS  Google Scholar 

  14. Holzer F, Roland U, Kopinke FD (2002) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: part 1. Accessibility of the intra-particle volume. Appl Catal B 38:163–181

    Article  CAS  Google Scholar 

  15. Trinh HQ, Mok YS (2014) Plasma-catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts. Chem Eng J 251:199–206

    Article  CAS  Google Scholar 

  16. Huang L, Xia LY, Ge XX, Jing HY, Dong WB, Hou HQ (2012) Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure. Chemosphere 88:229–234

    Article  CAS  Google Scholar 

  17. Zhu CZ, Wang XH, Huang Q, Huang L, Xie JJ, Qing CS, Chen TH (2013) Removal of gaseous carbon bisulfide using dielectric barrier discharge plasmas combined with TiO2 coated attapulgite catalyst. Chem Eng J 225:567–573

    Article  CAS  Google Scholar 

  18. Thevenet F, Guaitella O, Puzenat E, Herrmann JM, Rousseau A, Guillard C (2007) Oxidation of acetylene by photocatalysis coupled with dielectric barrier discharge. Catal Today 122:186–194

    Article  CAS  Google Scholar 

  19. Chang MB, Kushner MJ, Rood MJ (1993) Removal of SO2 and NO from gas streams with combined plasma photolysis. J Environ Eng 119:414–423

    Article  CAS  Google Scholar 

  20. Acayanka E, Djowe AT, Laminsi S, Tchoumke CC, Nzali S, Mbouopda AP, Ndifon PT, Gaigneaux EM (2013) Plasma-assisted synthesis of TiO2 nanorods by gliding arc discharge processing at atmospheric pressure for photocatalytic applications. Plasma Chem Plasma Process 33:725–735

    Article  CAS  Google Scholar 

  21. Chang MB, Balbach JH, Rood MJ, Kushner MJ (1991) Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis. J Appl Phys 69:4409–4417

    Article  CAS  Google Scholar 

  22. Fang HJ, Hou HQ, Xia LY, Shu XH, Zhang RX (2007) A combined plasma photolysis (CPP) method for removal of CS2 from gas streams at atmospheric pressure. Chemosphere 69:1734–1739

    Article  CAS  Google Scholar 

  23. Rosocha LA (2005) Nonthermal plasma applications to the environment: gaseous electronics and power conditioning. IEEE Trans Plasma Sci 33:129–137

    Article  CAS  Google Scholar 

  24. Kim HH, Ogata A (2011) Nonthermal plasma activates catalyst: from current understanding and future prospects. Eur Phys J Appl Phys 55:13806–13816

    Article  Google Scholar 

  25. Kim HH, Prieto G, Takashima K, Katsura S, Mizuno A (2002) Performance evaluation of discharge plasma process for gaseous pollution removal. J Electrost 55:25–41

    Article  CAS  Google Scholar 

  26. Ruan JJ, Li W, Shi Y, Nie Y, Wang X, Tan TE (2005) Decomposition of simulated odors in municipal wastewater treatment plants by a wire-plate pulse corona reactor. Chemosphere 59:327–333

    Article  CAS  Google Scholar 

  27. Futamura S, Zhang AH, Einaga H, Kabashima H (2002) Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catal Today 72:259–265

    Article  CAS  Google Scholar 

  28. Ye ZL, Zhang YN, Li P, Yang LY, Zhang RX, Hou HQ (2008) Feasibility of destruction of gaseous benzene with dielectric barrier discharge. J Hazard Mater 156:356–364

    Article  CAS  Google Scholar 

  29. Mok YS, Nam CM, Cho MH, Nam IS (2002) Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes. IEEE Trans Plasma Sci 30:408–416

    Article  CAS  Google Scholar 

  30. Lu B, Ji M (2012) Influence of plasma regimes and catalysts on ethanethiol oxidation. Plasma Chem Plasma Process 32:1025–1038

    Article  CAS  Google Scholar 

  31. Shi Y, Ruan J, Wang X, Li W, Tan T (2005) Decomposition of mixed malodorants in a wire-plate pulse corona reactor. Environ Sci Technol 39:6786–6791

    Article  CAS  Google Scholar 

  32. Mok YS, Lee HW, Hyun YJ (2001) Flue gas treatment using pulsed corona discharge generated by magnetic pulse compression modulator. J Electrost 53:195–208

    Article  CAS  Google Scholar 

  33. Assadi AA, Bouzaza A, Merabet S, Wolbert D (2014) Modeling and simulation of VOCs removal by nonthermal plasma discharge with photocatalysis in a continuous reactor: synergetic effect and mass transfer. Chem Eng J 258:119–127

    Article  CAS  Google Scholar 

  34. Kim JC (2002) Factors affecting aromatic VOC removal by electron beam treatment. Radiat Phys Chem 65:429–435

    Article  CAS  Google Scholar 

  35. Guo YF, Ye DQ, Chen KF, Tian YF (2006) Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor. Plasma Chem Plasma Process 26:237–249

    Article  CAS  Google Scholar 

  36. Raju BR, Reddy EL, Karuppiah J, Reddy PMK, Subrahmanyam C (2013) Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds. J Chem Sci 125:673–678

    Article  CAS  Google Scholar 

  37. Zhang H, Ji TY, Zhang RX, Hou HQ (2012) Destruction of H2S gas with a combined plasma photolysis (CPP) reactor. Plasma Sci Technol 14:134–139

    Article  CAS  Google Scholar 

  38. Sano T, Negishi N, Sakai E, Matsuzawa S (2006) Contributions of photocatalytic/catalytic activities of TiO2 and γ-Al2O3 in non-thermal plasma on oxidation of acetaldehyde and CO. J Mol Catal A 245:235–241

    Article  CAS  Google Scholar 

  39. Pekarek S (2012) Experimental study of surface dielectric barrier discharge in air and its ozone production. J Phys D Appl Phys 45:075201

    Article  Google Scholar 

  40. Subrahmanyam C, Magureanu M, Laub D, Renken A, Kiwi-Minsker L (2007) Nonthermal plasma abatement of trichloroethylene enhanced by photocatalysis. J Phys Chem C 111:4315–4318

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Scientific Research Foundation for the Returned overseas Chinese Scholars, Ministry of Education of China (2012JYLH0426) and the Fundamental Research Funds for the Central Universities (2014HGCH0007) for support this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Liu, Y., Lu, J. et al. Decomposition of Ethanethiol Using Dielectric Barrier Discharge Combined with 185 nm UV-Light Technique. Plasma Chem Plasma Process 35, 355–364 (2015). https://doi.org/10.1007/s11090-014-9609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9609-2

Keywords

Navigation