Skip to main content

Advertisement

Log in

Benzene Removal Using Non-thermal Plasma with CuO/AC Catalyst: Reaction Condition Optimization and Decomposition Mechanism

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Non-thermal plasma (NTP) technology in synergy with adsorption catalysts was used to decompose volatile organic compounds. The obtained results indicated that the non-thermal plasma-assisted catalytic system (NTP-C) resulted in higher benzene removal capability and system energy efficiency. The CuO/AC (AC: active carbon) catalysts were prepared by incipient-wetness impregnation method, and effect of CuO loading on benzene destruction was tested. The effect of reaction conditions such as inlet benzene concentration, reaction space velocity, reaction humidity and energy density were also studied. Additionally, the reaction conditions were optimized by the multi-factor orthogonal experiment, and the highest benzene removal efficiency achieved 96.5 %. The influence degree of various factors for benzene elimination was: reaction space velocity ≫ CuO loading > energy density > inlet benzene concentration ≫ reaction humidity. Furthermore, the benzene decomposition mechanism was discussed by analyses of the reaction exhaust, the coke substance inside the reactor, and the surface property of the used catalyst. The oxidation byproducts primarily consisted of phenol and substitutions of phenol. We propose that the radical reactions play a significant role in benzene removal on the surface of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101

    Article  CAS  Google Scholar 

  2. Utembe SR, Watson LA, Shallcross DE, Jenkin ME (2009) A common representative intermediates (CRI) mechanism for VOC degradation. Part 3: development of a secondary organic aerosol module. Atmos Environ 43:1982–1990

    Article  CAS  Google Scholar 

  3. Jodeiri N, Wu L, Mmbaga J, Hayes RE, Wanke SE (2010) Catalytic combustion of VOC in a counter-diffusive reactor. Catal Today 155:147–153

    Article  CAS  Google Scholar 

  4. Jarraya I, Fourmentin S, Benzina M, Bouaziz S (2010) VOC adsorption on raw and modified clay materials. Chem Geol 275:1–8

    Article  CAS  Google Scholar 

  5. Kumar A, Dewulf J, Van Langenhove H (2008) Membrane-based biological waste gas treatment. Chem Eng J 136:82–91

    Article  CAS  Google Scholar 

  6. Karre A, Jones K, Boswell J, Paca J (2012) Evaluation of VOC emissions control and opacity removal using a biological sequential treatment system for forest products applications. J Chem Technol Biot 87:797–805

    Article  CAS  Google Scholar 

  7. Jo WK, Kim JT (2009) Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J Hazard Mater 164:360–366

    Article  CAS  Google Scholar 

  8. Khan FI, Ghoshal AK (2000) Removal of Volatile Organic Compounds from polluted air. J Loss Prev Proc 13:527–545

    Article  Google Scholar 

  9. Lu B, Zhang X, Yu X, Feng T, Yao S (2006) Catalytic oxidation of benzene using DBD corona discharges. J Hazard Mater 137:633–637

    Article  CAS  Google Scholar 

  10. Yan X, Sun YF, Zhu TL, Fan X (2013) Conversion of carbon disulfide in air by non-thermal plasma. J Hazard Mater 261:669–674

    Article  CAS  Google Scholar 

  11. Park JY, Jung JG, Kim JS, Rim GH, Kim KS (2003) Effect of nonthermal plasma reactor for CF4 decomposition. IEEE Trans Plasma Sci 311:349–1354

    Google Scholar 

  12. Karuppiah J, Linga Reddy E, Manoj Kumar Reddy P, Ramaraju B, Karvembu R, Subrahmanyam Ch (2012) Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. J Hazard Mater 237:283–289

    Article  Google Scholar 

  13. Wang F, Tang XL, Yi HH, Li K, Wang JG, Wang C (2014) NO removal in the process of adsorption non-thermal plasma catalytic decomposition. RSC Adv 4:8502–8509

    Article  CAS  Google Scholar 

  14. Obradovic BM, Sretenovic GB, Kuraica MM (2011) A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas. J Hazard Mater 185:1280–1286

    Article  CAS  Google Scholar 

  15. Tang XJ, Feng FD, Ye LL, Zhang XM, Huang YF, Liu Z, Yan KP (2013) Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts. Catal Today 211:39–43

    Article  CAS  Google Scholar 

  16. Guo YF, Ye DQ, Chen KF, He JC, Chen WL (2006) Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. J Mol Catal A Chem 245:93–100

    Article  CAS  Google Scholar 

  17. Kim HH, Ogata A, Futamura S (2008) Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl Catal B Environ 79:356–367

    Article  CAS  Google Scholar 

  18. Van Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H (2007) Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 68:1821–1829

    Article  Google Scholar 

  19. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  20. Roland U, Holzer F, Kopinke FD (2005) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of γ-Al2O3. Appl Catal B Environ 58:217–226

    Article  CAS  Google Scholar 

  21. Malik MA, Minamitani Y, Schoenbach KH (2005) Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasma catalytic reactor. IEEE Trans Plasma Sci 33:50–56

    Article  CAS  Google Scholar 

  22. Delagrange S, Pinard L, Tatibouet JT (2006) Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts. Appl Catal B Environ 68:92–98

    Article  CAS  Google Scholar 

  23. Delimaris D, Ioannides T (2009) VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method. Appl Catal B Environ 89:295–302

    Article  CAS  Google Scholar 

  24. Kim SC, Shim WG (2008) Recycling the copper based spent catalyst for catalytic combustion of VOCs. Appl Catal B Environ 79:149–156

    Article  CAS  Google Scholar 

  25. Morales MR, Barbero BP, Cadús LE (2006) Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts. Appl Catal B Environ 67:229–236

    Article  CAS  Google Scholar 

  26. Wu JL, Huang YX, Xia QB, Li Z (2013) Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3 and CuO Catalysts. Plasma Chem Plasma Process 33:1073–1082

    Article  CAS  Google Scholar 

  27. Sun B, Sato M, Clements JS (1997) Optical study of active species produced by a pulsed streamer corona discharge in water. J Electrostat 39:189–202

    Article  CAS  Google Scholar 

  28. Guo YF, Ye DQ, Chen KF, Tian YF (2006) Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor. Plasma Chem Plasma Process 26:237–249

    Article  CAS  Google Scholar 

  29. Ye ZL, Zhang YN, Li P, Yang LY, Zhang RX, Hou HQ (2008) Feasibility of destruction of gaseous benzene with dielectric barrier discharge. J Hazard Mater 156:356–364

    Article  CAS  Google Scholar 

  30. Huang HB, Ye DQ, Leung DYC (2011) Abatement of toluene in the plasma-driven catalysis: mechanism and reaction kinetics. IEEE Trans Plasma Sci 39:877–882

    Article  Google Scholar 

  31. Jiang N, Lu N, Shang KF, Li J, Wu Y (2013) Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation. J Hazard Mater 263:387–393

    Article  Google Scholar 

  32. Karuppiah J, Linga Reddy E, Manoj Kumar Reddy P, Ramaraju B, Subrahmanyam Ch (2014) Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene. Int J Environ Sci Technol 11:311–318

    Article  CAS  Google Scholar 

  33. Sekiguchi H, Ando M, Kojima H (2005) Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor. J Phys D Appl Phys 38:1722–1727

    Article  CAS  Google Scholar 

  34. Ascenzi D, Franceschi P, Guella G, Tosi P (2006) Phenol production in benzene/air plasmas at atmospheric pressure. Role of radical and ionic routes. J Phys Chem A 110:7841–7847

    Article  CAS  Google Scholar 

  35. Alzueta MU, Glarborg P, Dam-Johansen K (2000) Experimental and kinetic modeling study of the oxidation of benzene. Int J Chem Kinet 32:498–522

    Article  CAS  Google Scholar 

  36. Dey GR, Sharma A, Pushpa KK, Das TN (2010) Variable products in dielectric-barrier discharge assisted benzene oxidation. J Hazard Mater 178:693–698

    Article  CAS  Google Scholar 

  37. Jiang N, Lu N, Li J, Wu Y (2012) Degradation of benzene by using a silent-packed bed hybrid discharge plasma reactor. Plasma Sci Technol 14:140–146

    Article  CAS  Google Scholar 

  38. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation (21477095, 21107106) and the Postdoctoral Science Foundation of China (2014M550498).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi He or Jinglian Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Fu, W., He, C. et al. Benzene Removal Using Non-thermal Plasma with CuO/AC Catalyst: Reaction Condition Optimization and Decomposition Mechanism. Plasma Chem Plasma Process 34, 1387–1402 (2014). https://doi.org/10.1007/s11090-014-9580-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9580-y

Keywords

Navigation