Skip to main content
Log in

Response of Linear, Branched or Crosslinked Polyethylene Structures on the Attack of Oxygen Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Linear, branched and crosslinked polyethylenes (PE) were exposed to the low-pressure oxygen plasma for 2–120 s. In the following the samples were washed with solvents to remove low-molecular weight oxidized material and to excavate the subjacent polymer structure for microscopic characterization. X-ray photoelectron spectroscopy (XPS) measurements provided information about changes in elemental composition and chemical structure of PE after plasma exposure and washing. The calculation of the concentration of tertiary C atoms using XPS data was a measure of branches and crosslinking in the polymer before and after exposure to oxygen plasma. Linear PE was most sensitive towards oxygen plasma and showed the highest concentration in tertiary C atoms after plasma exposure. On the other hand branched PE types, which possess originally more tertiary carbon atoms, have lost two-third of them after 2 s oxygen plasma exposure. Branched PE show also topological changes at their surface as detected by atomic force microscopy. Differential scanning calorimetry measurements confirmed strong changes in crystallinity and molecular orientation of linear PE already after 120 s exposure to the oxygen plasma interpreted as amorphization. These effects should be interpreted as result of crosslinking caused by the recombination of dangling bond sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Inagaki N (1996) Plasma surface modification and plasma polymerization. Technomic, Lancaster

    Google Scholar 

  2. Friedrich J (2012) The plasma chemistry of polymer surfaces: advanced techniques for surface design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Rossmann K (1956) Improvement of bonding properties of polyethylene. J Polym Sci 19:141–144

    Article  CAS  Google Scholar 

  4. Hansen RH, Schonhorn A (1966) A new technique for preparing low surface energy polymers for adhesive bonding. J Polym Sci Part B Polym Lett 4:203–209

    Article  Google Scholar 

  5. Hansen RH, Schonhorn A (1967) Surface treatment of polymers for adhesive bonding. J Appl Polym Sci 11:1461–1474

    Article  Google Scholar 

  6. Hudis MV (1972) Surface crosslinking of polyethylene using a hydrogen glow discharge. J Appl Polym Sci 16:2397

    Article  CAS  Google Scholar 

  7. Kuzuya M, Yamashiro T, Kondo S, Sugito M, Mouri M (1998) Plasma-induced surface radicals of low-density polyethylene studied by electron spin resonance. Macromolecules 31:3225–3229

    Article  CAS  Google Scholar 

  8. Kuzuya M, Kondo S, Sugito M, Yamashiro T (1998) Peroxy radical formation from plasma-induced surface radicals of polyethylene as studied by electron spin resonance. Macromolecules 31:3230–3234

    Article  CAS  Google Scholar 

  9. Kuzuya M, Niwa J, Ito H (1993) Nature of plasma-induced surface radicals of powdered polyethylene studied by electron spin resonance. Macromolecules 26:1990–1995

    Article  CAS  Google Scholar 

  10. Lipatow JS, Bezruk LI, Lebedew EV, Gomza JP (1974) Einfluß des Kristallinitatsgrades der Polymeren auf die Abbaugeschwindigkeit im Hochfrequenzplasma. Vysokomol Soedin 5:328

    Google Scholar 

  11. Mijovic JS, Koutsky AS (1977) Etching of polymeric surfaces: a review. Polym Plast Technol Eng 9:139–179

    Article  CAS  Google Scholar 

  12. Švorčík V, Kolářová K, Slepička P, Macková A, Novotná M, Hnatowicz V (2006) Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym Degrad Stab 91:1219–1225

    Article  Google Scholar 

  13. Friedrich JF, Unger WES, Lippitz A, Koprinarov I, Weidner S, Kühn G, Vogel L (1998) Plasma pretreatment of polymers—relevance to adhesion of metals. In: Mittal KL (ed) Metallized plastics 5&6: fundamental and applied aspects. VSP, Utrecht, pp 271–293

    Google Scholar 

  14. Weidner S, Kühn G, Friedrich JF, Unger WES, Lippitz A (1996) Plasmaoxidative degradation of polymers studied by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 10:727–737

    Article  CAS  Google Scholar 

  15. Unger WES, Lippitz A, Friedrich J, Wöll C, Nick L (1999) The use of octadecyltrichlorosilane self-assembled layers as a model for the assessment of plasma treatment and metallization effects on polyolefines. Langmuir 15:1161–1166

    Article  CAS  Google Scholar 

  16. Švorčík V, Kotál V, Siegel J, Sajdl P, Macková A, Hnatowicz V (2007) Ablation and water etching of poly(ethylene) modified by argon plasma. Polym Degrad Stab 92:1645–1649

    Article  Google Scholar 

  17. Svorcik V, Kotal V, Slepicka P, Blahova O, Spırkova M, Sajdl P, Hnatowicz V (2006) Modification of surface properties of polyethylene by Ar plasma discharge. Nucl Instrum Methods Phys Res B 244:365–372

    Article  CAS  Google Scholar 

  18. Banik I, Kim KS, Yun YI, Kim DH, Ryu CM, Park CS, Sur GS, Park CE (2003) A closer look into the behavior of oxygen plasma-treated high-density polyethylene. Polymer 44:1163–1170

    Article  CAS  Google Scholar 

  19. Kim KS, Ryu CM, Park CS, Sur GS, Park CE (2003) Investigation of crystallinity effects on the surface of oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer 44:6287–6295

    Article  CAS  Google Scholar 

  20. Friedrich J, Kühn G, Gähde J (1979) Untersuchungen zur Plasmaätzung von Polymeren. Teil I: Strukturänderungen von Polymeren nach Plasmaätzung. Acta Polym 30:470–477

    Article  CAS  Google Scholar 

  21. Friedrich J, Gähde J, Pohl M (1980) Untersuchungen zur Plasmaätzung von Polymeren. IV. Selektives Plasmaätzen von Polyethylenen unterschiedlicher Kristallinität. Acta Polym 31:310–315

    Article  CAS  Google Scholar 

  22. Grasenick F (1957) Radex-Rundschau 56:843–856

    Google Scholar 

  23. Kassenbeck P (1958) New preparation methods of electron microscopy and their results in the sphere of fiber research. Melliand Textilberichte 39:55–61

    CAS  Google Scholar 

  24. Spit BJ (1967) Elektronenmikroskopische Präparationsmethoden bei Untersuchungen von Hochpolymeren. Faserforsch Textiltechn/Z Polymerenforsch 18:161–168

    CAS  Google Scholar 

  25. Stiller W, Friedrich J (1981) Vergleich der Wirkprinzipien von Strahlen- und Plasmachemie. Z Chem 21:91–118

    Article  CAS  Google Scholar 

  26. Friedrich JF, Unger WES, Lippitz A, Giebler R, Koprinarov S, Weidner S, Kühn G (2000) Significance of interfacial redox reactions and formation of metal–organic complexes for the adhesion of metals on pristine and plasma-treated polymers. In: Mittal KL (ed) Polymer surface modification: relevance to adhesion, vol 2. VSP, Utrecht, pp 137–172

    Google Scholar 

  27. Friedrich JF, Wigant L, Unger WES, Lippitz A, Wittrich H (1998) Corona, spark and combined UV and ozone modification of polymer foils. Surf Coat Technol 98:879–885

    Article  CAS  Google Scholar 

  28. Strobel M, Dunatov C, Strobel JM, Lyons CS, Perron SJ, Morgan MC (1989) Low-molecular-weight materials on corona-treated polypropylene. J Adhes Sci Technol 3:321–335

    Article  CAS  Google Scholar 

  29. Loudon GM (2002) Organic chemistry, 4th edn. Oxford University Press, New York, pp 317–318

    Google Scholar 

  30. Mix R, Friedrich JF, Inagaki N (2012) Modification of branched polyethylene by aerosol-assisted dielectric barrier discharge. Plasma Process Polym 9:406–416

    Article  CAS  Google Scholar 

  31. Foerch R, Beamson G, Briggs D (1991) XPS valence band analysis of plasma-treated polymers. Surf Interface Anal 17:842–846

    Article  CAS  Google Scholar 

  32. Friedrich JF, Gähde J, Frommelt H, Wittrich H (1976) Modifizierung von Feststoffoberflächen in einer HF-Entladung. III. Plasmachemisches Aufbringen funktioneller Gruppen und selektiver Abbau teilkristalliner Polymer. Faserforsch Textiltechn/Z Polymerenforsch 27:604–608

    CAS  Google Scholar 

  33. Unger WES, Friedrich JF, Lippitz A, Koprinarov I, Weiss K, Wöll C (1998) The application of X-ray absorption spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (ESCA) in surface analysis of chromium-evaporated polymers and organic films. In: Mittal KL (ed) Metallized plastics 5&6: fundamental and applied aspects. VSP, Utrecht, pp 147–168

    Google Scholar 

  34. Friedrich J, Pohl M, Elsner T (1988) Visuelle und analytische Identifizierung und Lokalisierung gealterter Oberflächenschichten von bewitterten Polymeren. Acta Polym 39:544–549

    Google Scholar 

  35. Poncin-Epaillard F, Vallon S, Drevillon B (1997) Illustration of surface crosslinking of different polymers treated in argon plasma. Macromol Chem Phys 198:2439–2456

    Article  CAS  Google Scholar 

  36. Friedrich J, Frommelt H (1988) Changes in mechanical properties of polymers by short-time exposure in a glow discharge. Acta Chim Hung 125:165–175

    CAS  Google Scholar 

  37. Chai Y, Salez T, McGraw JD, Benzaquen M, Dalnoki-Veress K, Raphael E, Forrest JA (2014) A direct quantitative measure of surface mobility in a glassy polymer. Science 343:994–999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are due to Mr. F. Milczewski (BAM 6.9) and Mrs. G. Hidde (BAM-6.7) for accomplishing of experimental work and numerous XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mix, R., Friedrich, J.F., Neubert, D. et al. Response of Linear, Branched or Crosslinked Polyethylene Structures on the Attack of Oxygen Plasma. Plasma Chem Plasma Process 34, 1199–1218 (2014). https://doi.org/10.1007/s11090-014-9558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9558-9

Keywords

Navigation