Skip to main content
Log in

Surface Modification of Ultra-high Molecular Weight Polyethylene Membranes Using Underwater Plasma Polymerization

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Ultra-high molecular weight polyethylene membranes were modified and subsequently polymer coated using the underwater plasma produced by glow discharge electrolysis. This plasma pretreatment generated various O-functional groups among them OH groups have dominated. This modified inner (pore) surface of membranes showed complete wetting and strong adhesion to a hydrogel copolymerized by glow discharge electrolysis also. The deposited hydrogel consists of plasma polymerized acrylic acid crosslinked by copolymerization with the bifunctional N,N′-methylenebis(acrylamide). Tuning the hydrogel hydrophilicity and bio-compatibility poly(ethylene glycol) was chemically inserted into the copolymer. Such saturated polymer could only be inserted on a non-classic way by (partial) fragmentation and recombination thus demonstrating the exotic properties of the underwater plasma. The modification of membrane was achieved by squeezing the reactive plasma solution into the pores by plasma-induced shock waves and supported by intense stirring. The deposited copolymer hydrogel has filled all pores also in the inner of membrane as shown by scanning electron microscopy of cross-sections. The copolymer shows the characteristic units of acrylic acid and ethylene glycol as demonstrated by infrared spectroscopy. A minimum loss in carboxylic groups of acrylic acid during the plasma polymerization process was confirmed by X-ray photoelectron spectroscopy. Additional cell adhesion tests on copolymer coated polyethylene using IEC-6 cells demonstrated the bio-compatibility of the plasma-deposited hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Weiss P (1964) Haftsysteme und Haftfestigkeit. DECHEMA monography, Frankfurt/Main

    Google Scholar 

  2. Dyckerhoff GA, Sell PJ (1972) Angew Makromol Chem 21:169–185

    Article  CAS  Google Scholar 

  3. Sharma CP (1980) J Sci Ind Res 39:453–461

    CAS  Google Scholar 

  4. Friedrich JF (2012) The plasma chemistry of polymer surfaces: advanced techniques for surface design. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  5. Friedrich JF, Mix R, Schulze R-D, Meyer-Plath A, Joshi R, Wettmarshausen S (2008) Plasma Proc Polym 5:407–423

    Article  CAS  Google Scholar 

  6. Friedrich JF (2011) Plasma Proc Polym 8:783–802

    Article  CAS  Google Scholar 

  7. McDonald J, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller O, Whitesides GM (2000) Electrophoresis 21:27–40

    Article  CAS  Google Scholar 

  8. Nuzzo RG, Smolinsky G (1984) Macromolecules 917:1013

    Article  Google Scholar 

  9. Kühn G, Weidner S, Decker R, Ghode A, Friedrich J (1999) Surf Coat Technol 116–119:796–801

    Article  Google Scholar 

  10. Friedrich J, Mix R, Kühn G, Retzko I, Schönhals A, Unger W (2003) Composite Interface 10:173–223

    Article  CAS  Google Scholar 

  11. Friedrich J, Wettmarshausen S, Hennecke M (2009) Surf Coat Technol 203:3647–3655

    Article  CAS  Google Scholar 

  12. Oosterom R, Ahmeda TJ, Poulis JA, Bersee HEN (2006) Med Engin Phys 28:323–330

    Article  CAS  Google Scholar 

  13. Speranza G, Gottardi G, Pederzolli C, Lunelli L, Canteri R, Pasquardini L, Carli E, Lui A, Maniglio D, Brugnara M, Anderle M (2004) Biomaterials 25:2029–2037

    Article  CAS  Google Scholar 

  14. Morra M, Cassinelli C (2000) Acid-base characteristics of polymer surfaces: its relevance to bioadhesion. In: Mittal KL (ed) Acid-base interactions: its relevance to adhesion science and technology, vol 2, part 3. VSP, Netherlands, pp 497–512

    Google Scholar 

  15. Lee HB, Khang G, Lee JH (2003) Polymeric Biomaterials. In: Park JB, Bronziono JD (eds) Polymeric materials from biomaterials: principles and applications. CRC Press, Danvers, pp 79–94

    Google Scholar 

  16. Nunes SP, Peinemann K-V (2006) Membrane materials and membrane preparation, in: membrane technology in chemical industry. Part I, 2nd edn. Wiley-VCH Verlag, Weinheim, pp 3–75

    Book  Google Scholar 

  17. Lu Q, Yu J, Gao J, Wu J, Yan L (2012) Cent Eur J Chem 10:1349–1359

    Article  CAS  Google Scholar 

  18. Plumlee K, Schwartz C (2009) J Polym Sci 14:2555–2563

    Google Scholar 

  19. Joshi RS, Schulze R-D, Meyer-Plath A, Friedrich JF (2008) Plasma Process Polymer 5:695–707

    Article  CAS  Google Scholar 

  20. Joshi RS (2010) PhD thesis, BAM Dissertationsreihe, vol 59, Berlin, ISBN 978-3-9813550-2-4

  21. Bullock AT, Gavin DL, Ingram MD (1980) J Chem Soc Farad Trans 1(76):648

    Google Scholar 

  22. Joshi RS, Friedrich JF, Wagner M (2009) Europ Phys J D 54:249–258

    Article  CAS  Google Scholar 

  23. Joshi RS, Friedrich JF, Wagner M (2011) J Adhes Sci Technol 25:283–305

    Article  CAS  Google Scholar 

  24. Sengupta SK, Singh R, Srivastava AK (1998) J Electrochem Soc 145:2209

    Article  CAS  Google Scholar 

  25. Denaro AR, Hough KO (1973) Electrochim Acta 18:863–868

    Article  CAS  Google Scholar 

  26. Sengupta SK, Sandhir U, Misra N (2001) J Polym Sci, Part A: Polym Chem 39:1584–1588

    Article  CAS  Google Scholar 

  27. Malik MA, Ahmed M, Rehman E, Naheed R, Ghaffar A (2003) Plasma Polym 8:271–279

    Article  CAS  Google Scholar 

  28. Bamford CH, Al-Lamee KG (1994) Polymer 35:2844

    Article  CAS  Google Scholar 

  29. Osada Y, Bell AT, Shen M (1978) J Polym Sci Polym Lett Ed 16:309–311

    Article  CAS  Google Scholar 

  30. Johnson DR, Osada Y, Bell AT, Shen M (1981) Macromolecules 14:118–124

    Article  CAS  Google Scholar 

  31. Osada M, Takase M, Iriyama Y (1983) Polym J 15:81–86

    Article  CAS  Google Scholar 

  32. Morra M, Cassinelli C (2000) Acid-base characteristics of polymer surfaces: relevance to bioadhesion. In: Mittal KL (ed) Acid-base interactions: relevance to adhesion science and technology, vol 2, part 3. VSP BV, Netherlands, pp 497–512

    Google Scholar 

  33. Maximov AI (2004) Fiber Chemistry 36:5

    Google Scholar 

  34. del Fanti NA (2008) Infrared spectroscopy of polymers. Thermo Fisher Scientific, Madison

    Google Scholar 

  35. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang J-S (2006) Ind Eng Chem Res 45:882–905

    Article  CAS  Google Scholar 

  36. Liang CY, Lytton MR, Boone CJ (1960) J Polym Sci 47:139

    Article  CAS  Google Scholar 

  37. Liang CY (1964) IR Spectra of Polymers: Deuteration and Polarization. In: Bacon K (ed) Newer methods of polymer characterization. Interscience, New York, pp 33–102

    Google Scholar 

  38. Beamson G, Briggs D (1992) High resolution XPS of organic polymers, The Scienta ESCA300 database. Wiley, Chichester

    Google Scholar 

  39. Elias H-G (1990) Makromoleküle, vol 1. Hüthig & Wepf, Basel

    Google Scholar 

  40. Friedrich JF, Kühn G, Mix R (2006) Prog Coll Polym Sci 132:62

    Article  CAS  Google Scholar 

  41. Alexander MR, Duc TM (1998) J Mater Chem 8:937–943

    Article  Google Scholar 

  42. Jafari R, Tatoulian M, Morscheidt W, Arefi-Khonsari F (2006) Reactive Functional Polymers 66:1757–1765

    Article  CAS  Google Scholar 

  43. Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  44. Rasmussen JR, Stedronsky ER, Whitesides GM (1977) J Am Chem Soc 99:14

    Google Scholar 

  45. Lydon MJ, Minett TW, Tighe BJ (1985) Biomaterial 6:396–402

    Article  CAS  Google Scholar 

  46. Quaroni A, Isselbacher K, Ruoslahti E (1978) Proc Natl Acad Sci USA 75:5548–5552

    Article  CAS  Google Scholar 

  47. Cukierman E, Pankov R, Yamada KM (2002) Curr Opin Cell Biol 14:633–639

    Article  CAS  Google Scholar 

  48. Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, Atala A, van Dyke M (2009) Biomaterials 30:4021–4028

    Article  CAS  Google Scholar 

  49. Kleinman HK, Philip D, Hoffman MP (2003) Curr Opin Biotechnol 14:526–532

    Article  CAS  Google Scholar 

  50. Vakonakis I, Campbell I (2007) Curr Opin Cell Biol 19:578–583

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors sincerely thank Dr. Ute Niebergall for making available hydraulic molding press machine for preparing porous membrane samples. Authors are obliged to receive cordial support from Dr. Wolfgang Unger for making available the SEM instrument. Also thanks are due to Mr. Frank Milczewski for his friendly support in laboratory work and Mrs. Gundula Hidde for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Friedrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, R., Friedrich, J. & Krishna-Subramanian, S. Surface Modification of Ultra-high Molecular Weight Polyethylene Membranes Using Underwater Plasma Polymerization. Plasma Chem Plasma Process 33, 921–940 (2013). https://doi.org/10.1007/s11090-013-9476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9476-2

Keywords

Navigation