Skip to main content
Log in

Decomposition of Dissolved Methylene Blue in Water Using a Submerged Arc Between Titanium Electrodes

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Low voltage, low energy submerged pulsed arcs between Ti electrodes with a pulse repetition rate of 100 Hz, energies of 2.6–192 mJ and durations of 10–40 μs, followed by aging in the dark, were used to decompose 10 mg/l methylene blue (MB) contamination in 40 ml aqueous solutions, with and without the addition of 0.5 % H2O2. The impact of the arc treatment on the MB removal ratio (C0–Cta)/C0 was considered as a function of aging time ta, where C0 and Cta are the MB concentrations initially and after ta (the time needed to complete removal of MB after cessation of exposure of the arc). Particles eroded from the electrodes during the discharge enabled MB decomposition during aging. The particles were studied by XRD, XPS and Raman analysis, and titanium oxides and peroxides were found. MB decomposition during aging is explained by the formation of a surface layer of titanium peroxide that forms by the interaction of titanium dioxide with H2O2, which produce radicals which oxidize the MB. The 99.6 % MB removal yield (G99.6 = 90 g/kWhr) of the submerged pulsed arc process with Ti electrodes and addition of 0.5 % H2O2 was more than 60 times larger than obtained at 50 % removal with other plasma methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Is F, Karna W, Narsito W, Shaobin W (2009) World J Chem 4:21–26

    Google Scholar 

  2. Sarioglu M (2006) Global NEST J 8:113–120

    Google Scholar 

  3. Magureanu M, Piroi D, Mandache NB, Parvulescu V (2008) J Appl Phys 104:103306

    Article  Google Scholar 

  4. Bhatnagar A, Jain AK (2005) J Colloid Interface Sci 281:49–55

    Article  CAS  Google Scholar 

  5. Singh K, Arora S (2011) Crit Rev Environ Sci Technol 41:807–878

    Article  CAS  Google Scholar 

  6. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Ind Eng Chem Res 45:882–905

    Article  CAS  Google Scholar 

  7. Parkansky N, Alterkop BA, Boxman RL, Mamane H, Avisar D (2008) Plasma Chem Plasma Process 28:583–592

    Article  CAS  Google Scholar 

  8. Anipolov AM, Barkhudarov AM, Bark YB, Zadiraka YB, Christofi M, Kozlov YN, Kossyi IA, Kop’ev VA, Silakov VP, Taktakishvili MI, Temchin SM (2001) J Phys D Appl Phys 34:993–999

    Article  Google Scholar 

  9. Malik MA, Ghaffar A, Malik SA (2001) Plasma Sources Sci Technol 10:82–91

    Article  CAS  Google Scholar 

  10. Travis J (1994) Science 264:360–362

    Article  CAS  Google Scholar 

  11. Hoang LH, Legube B (2009) IEEE Trans Dielectr Electr Insulation 16:1604–1608

    Article  CAS  Google Scholar 

  12. Angeloni DM, Dickson SE, Emelko MB, Chang JS (2006) Jpn J Appl Phys 45:8290–8293

    Article  CAS  Google Scholar 

  13. Leitner NKV, Syoen G, Romat H, Urashima K, Chang JS (2005) Water Res 39:4705–4714

    Article  Google Scholar 

  14. Sun B, Sato M, Clements JS (2000) Environ Sci Technol 34:509–513

    Article  CAS  Google Scholar 

  15. Liu Y, Jiang X (2008) Plasma Chem Plasma Process 28:15–24

    Article  CAS  Google Scholar 

  16. Tzedakis T, Savall A, Clifton MJ (1989) J Appl Electrochem 19:911–921

    Article  CAS  Google Scholar 

  17. Chou S, Huang YH, Lee SN, Huang GH, Huang C (1999) Water Res 33:751–759

    Article  CAS  Google Scholar 

  18. Guivarish E, Trevin S, Lahitte C, Oturan MA (2003) Environ Chem Lett 1:38–44

    Article  Google Scholar 

  19. Shin SH, Kim YH et al (2004) Korean J Chem Eng 21:806–810

    Article  CAS  Google Scholar 

  20. Chang JS, Urashima K, Dickson S, Emelko MBS (2008) In: Guceri S, Fridman A (eds) Plasma assisted decontamination of biological and chemical agents. Springer, New York

    Google Scholar 

  21. Boxman RL, Parkansky N, Mamane H, Meirovitz M, Orkabi Y, Halperin T, Cohen D, Orr N, Gidalevich E, Alterkop B, Cheskis S (2008) In: Guceri S, Fridman A (eds) Plasma assisted decontamination of biological and chemical agents. Springer, New York

    Google Scholar 

  22. Parkansky N, Vegerhof A, Alterkop B, Berkh O, Boxman RL (2012) Submerged arc breakdown of methylene blue in aqueous solutions. Plasma Chem Plasma Process. doi:10.1007/s1109001293859

  23. Malik MA (2010) Plasma Chem Plasma Process 30:21–31

    Article  CAS  Google Scholar 

  24. Randorn C, Wongnawa S, Boonsin P (2004) ScienceAsia 30:149–156

    Article  Google Scholar 

  25. Houas A, Lachheba H, Ksibia M, Elalouia E, Guillardb C, Herrmann JM (2001) Appl Catal B 31:145–157

    Article  CAS  Google Scholar 

  26. Tengvall P, Lundstrom I, Sjoqvist L, Eilwing H, Bjursten LM (1989) Biomaterials 10:166–175

    Article  CAS  Google Scholar 

  27. Ohno T, Masaki Y, Hirayama S, Matsumura M (2001) J Catal 204:163–168

    Article  CAS  Google Scholar 

  28. Sahni M, Locke BR (2006) Plasma Process Polym 3:342–354

    Article  CAS  Google Scholar 

  29. Gupta SB Investigation of a physical disinfection process based on underwater corona discharges. Institut für Hochleistungsimpuls und Mikrowellentechnik

  30. Takakura K, Rinby B (1968) J Phys Chem 78:164–168

    Article  Google Scholar 

  31. Tengvall P, Eilwing H, Lundstrom I (1989) J Colloid Interface Sci 130:405–413

    Article  CAS  Google Scholar 

  32. Tengvall P, Lundstrom I, Sjoqvist L, Eilwing H, Bjursten LM (1989) Biomaterials 10:166–175

    Article  CAS  Google Scholar 

  33. Tengvall P, Hornsten EG, Elwing H, Lundstrom I (1990) J Biomed Mater Res 24:319–330

    Article  CAS  Google Scholar 

  34. Sheng CK (2005) Mat Yunus MW. Pertanika J Sci Technol 13:23–30

    Google Scholar 

  35. Impert O, Katafias A, Kita P, Mills A, Pietkiewicz GA, Wrzeszcz G (2003) Dalton Trans 2003:348–353

    Article  Google Scholar 

  36. He J, Shi H, Shu X, Li M (2010) AIChE J 56:1352–1362

    CAS  Google Scholar 

  37. Katekhaye SN, Gogate PR (2011) Chem Eng Process 50:95–103

    Article  CAS  Google Scholar 

  38. Rao YF, Chu W (2010) Chem Eng J 158:181–187

    Article  CAS  Google Scholar 

  39. Ogino C, Dadjour MF, Iida Y, Shimizu N (2008) J Hazard Mater 153:551–556

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naum Parkansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkansky, N., Simon, E.F., Alterkop, B.A. et al. Decomposition of Dissolved Methylene Blue in Water Using a Submerged Arc Between Titanium Electrodes. Plasma Chem Plasma Process 33, 907–919 (2013). https://doi.org/10.1007/s11090-013-9465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9465-5

Keywords

Navigation