Skip to main content
Log in

Influence of Partition Function and Interaction Potential on Transport Properties of Thermal Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper, divided into two parts, is devoted to the transport properties at local thermodynamic equilibrium: the first part shows the influences of partition functions through the plasma composition and the second part the influence of interaction potentials. In the first part, for complex chemical mixtures the determination of the partition functions of different species is considered: monatomic, diatomic and polyatomic. In the plasmas the monatomic species are important; we study thoroughly the partition functions of monatomic neutrals and ions. We introduce two cut-off criteria. We test the influence of the two criteria on the partition functions and consequently onto the plasma composition and transport properties. We applied the study to Ar–Cu mixtures. In the second part, an historic study shows that the collision integrals used in calculating the transport properties become more accurate leading to more reliable values of the transport coefficients: application to N2 plasma. Now we have to calculate transport properties of complex mixtures and in these cases, for numerous interactions, a lack of data means that model potentials have to be used to determine collision integrals. In this paper, we have used two potential models: the first, for neutral–neutral and ion–neutral interactions, is an improvement of the Lennard-Jones function and the second is developed, from Stockmayer potential, for polar gases. We compare, for the collision integrals, the results obtained by these two models with those determined with more accurate potentials: applications to CO2 plasma and H2–N2 mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Capitelli M, Giordano D, Colonna G (2008) The role of Debye-Hückel electronic energy levels on the thermodynamic properties of hydrogen plasmas including isentropic coefficients. Phys Plasmas 15:082115

    Article  Google Scholar 

  2. Colonna G, Capitelli M (2009) A few level approach for the electronic partition function of atomic systems. Spectrochimica Acta B 64:863–873

    Article  Google Scholar 

  3. D’Ammando G, Colonna G, Pietanea LD, Capitelli M (2010) Computation of thermodynamic plasma properties: a simplified approach. Spectrochimica Acta B 65:603–615

    Article  Google Scholar 

  4. Aubreton J, Elchinger MF, Hacala A, Michon U (2009) Transport coefficients of typical biomass equimolar CO-H2 plasma. J Phys D Appl Phys 42:095206

    Article  Google Scholar 

  5. Catalfamo C, Bruno D, Colonna G, Laricchiuta A, Capitelli M (2009) High temperature Mars atmosphere. Part II: transport properties. Eur Phys J D 54:613–621

    Article  CAS  Google Scholar 

  6. Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F (2007) On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres. Chem Phys 338:62–68

    Article  CAS  Google Scholar 

  7. Laricchiuta A, Colonna G, Bruno D, Celiberto R, Gorse C, Pirani F, Capitelli M (2007) Classical transport collision integrals for a Lennard-Jones like phenomenological model potential. Chem Phys Lett 445:133–139

    Article  CAS  Google Scholar 

  8. Stupochenko EV, Stakhanov IP, Samuilov EV, Pleshanov AS, Rozhdestvenskii IB (1961) Thermodynamic properties of air between 1000 K and 12000 K and 0.001 and 1000 atmospheres in physical gas dynamic. Ed. A S Predvoditelev Pergamon Press

  9. Aubreton J, Elchinger MF, Fauchais P (1998) New method to calculate thermodynamic and transport properties of a multi-temperature plasma: application to N2 plasma. Plasma Chem Plasma Proc 18:1–27

    Article  CAS  Google Scholar 

  10. Gurvich LV, Veyts IV, Alcock CB (1989) Thermodynamic properties of individual substances. Hemisphere publishing Corporation, New York

    Google Scholar 

  11. Hirschfelder JO, Curtis CF, Bird RB (1967) Molecular theory of gases and liquids, 4th edn. Wiley, New York

    Google Scholar 

  12. NIST Atomic Spectra Database Levels Data (2006). http://physics.nist.gov/asd

  13. Griem HR (1964) Plasma spectroscopy. McGraw-Hill Book Company, NY

    Google Scholar 

  14. Capitelli M, Molinari E (1970) Problems of determination of high temperature thermodynamic properties of rare gases with application to mixtures. J Plasma Phys 4:335–355

    Article  CAS  Google Scholar 

  15. Gurvich LV, Kvlividze VA (1961) Thermodynamic functions of monatomic and diatomic gases over a wide temperature range. I. Thermodynamic functions of ideal monatomic gases. Russ J Phys Chem 35:822–827

    Google Scholar 

  16. Bruno D, Laricchiuta A, Capitelli M, Catalfamo C (2007) Effect of electronic excited states on transport in magnetized hydrogen plasma. Phys Plasmas 14:022303

    Article  Google Scholar 

  17. Capitelli M, Colonna G, D’Angola A (2011) Fundamental aspects of plasma chemical physics. Springer Series On Atomic, Optical and Plasma Physics, Springer, Berlin

    Google Scholar 

  18. Hummer D, Mihalas D (1988) The equation of state for stellar envelopes. i. an occupation probability formalism for the truncation of internal partition functions. Astrophys J 331:794–814

    Article  CAS  Google Scholar 

  19. Zaghloul MR (2010) On the ionization equilibrium of the hot hydrogen plasma and thermodynamic consistency of formulating finite internal partition functions. Phys Plasmas 17:062701

    Article  Google Scholar 

  20. Capitelli M, Ficocelli E, Molinari V (1970) Equilibrium compositions and thermodynamic properties of mixed plasmas II—Argon-oxygen plasmas at 10−2–10 atmospheres, between 2,000 K and 35,000 K, Centro di Studio per la Chimica dei Plasmi del Consiglio Nazionale delle Ricerche-Istituto di Chimica Generale ed Inorganica, Università degli Studi, Adriatica Editrice (Bari)

  21. Capitelli M, Devoto RS (1973) Transport coefficients of high-temperature nitrogen. Phys Fluids 16:1835–1841

    Article  CAS  Google Scholar 

  22. Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen and argon-oxygen plasmas Plasma Chem. Plasma Proc 14:451–490

    CAS  Google Scholar 

  23. Aubreton J, Elchinger MF (2004) Coefficients de transport d’un plasma d’argon-azote. Internal Report

  24. Levin E, Partridge H, Stallcop JR (1990) Collision integrals and high temperature transport properties for N–N, O–O and N–O. J Thermophys 4:469–477

    Article  CAS  Google Scholar 

  25. Stallcop JR, Partridge H, Levin E (1991) Resonance charge transfer, transport cross sections, and collision integrals for N+(3P)-N(4S0) and O+(4S0)-O(3P) interactions. J Chem Phys 95:6429–6439

    Article  CAS  Google Scholar 

  26. Neynaber RH, Marino LL, Rothe EW, Trujillo SM (1963) Low-energy electron scattering from atomic nitrogen. Phys Rev 129:2069–2071

    Article  CAS  Google Scholar 

  27. Stallcop JR, Partridge H (1997) The N2–N2 potential energy surface. Chem Phys Lett 281:212–220

    Article  CAS  Google Scholar 

  28. Stallcop JR, Partridge H, Levin E (2000) Effective potential energies and transport cross sections for interactions of hydrogen and nitrogen. Phys Rev A 62:062709

    Article  Google Scholar 

  29. Stallcop JR, Partridge H, Levin E (2001) Effective potential energies and transport cross sections for atom-molecule interactions of nitrogen and oxygen. Phys Rev A 64:042722

    Article  Google Scholar 

  30. Blaha M, Davis J (1975) Elastic scattering of electrons by oxygen and nitrogen at intermediate energies. Phys Rev A 12:2319–2324

    Article  CAS  Google Scholar 

  31. Stepanek J (2003) Electron and positron atomic elastic scattering cross sections. Rad Phys Chem 66:99–116

    Article  CAS  Google Scholar 

  32. Eletskii V, Capitelli M, Celiberto R, Laricchiuta A (2004) Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms. Phys Rev A 69:042718

    Article  Google Scholar 

  33. Kosarim AV, Smirnov BM, Capitelli M, Celiberto R, Laricchiuta A (2006) Resonant charge exchange involving electronically excited states of nitrogen atoms and ions. Phys Rev A 74:062707

    Article  Google Scholar 

  34. Laricchiuta A, Bruno D, Capitelli M, Catalfamo M, Celiberto R, Colonna G, Diomede P, Giordono D, Gorse C, Longo S, Pagano D, Pirani F (2009) High temperature Mars atmosphere. Part I: transport cross sections. Eur Phys J D 54:607–612

    Article  CAS  Google Scholar 

  35. D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur Phys J D 46:129–150

    Google Scholar 

  36. Murphy AB (2000) Transport coefficients of hydrogen and argon-hydrogen plasmas. Plasma Chem Plasma Proc 20(3):279

    Article  CAS  Google Scholar 

  37. Cambi R, Cappelletti D, Liuti G, Pirani F (1991) Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations. J Chem Phys 95:1852–1861

    Article  CAS  Google Scholar 

  38. Pirani F, Cappelletti D, Liuti G (2001) Range, strength and anisotropy of intermolecular forces in atom-molecule systems: an atom-bond pairwise addivity approach. Chem Phys Lett 350:286–296

    Article  CAS  Google Scholar 

  39. Pirani F, Maciel GS, Cappelletti D, Aquilanti V (2006) Experimental benchmarks and phenomenology of interatomic forces: open-shell and electronic anisotropy effects. Int Rev Phys Chem 25:165–199

    Article  CAS  Google Scholar 

  40. Cappelletti D, Liuti G, Pirani F (1991) Generalization to ion-neutral systems of the polarizability correlations for interaction potential parameters. Chem Phys Lett 183:297–303

    Article  CAS  Google Scholar 

  41. Aquilanti V, Cappelletti D, Pirani F (1996) Range and strength of interatomic forces: dispersion and induction contributions to the bonds of dications and of ionic molecules. Chem Phys 209:299–311

    Article  CAS  Google Scholar 

  42. Stiehler J, Hinze J (1995) Calculation of static polarizabilities and hyperpolarizabilities for the atoms He through Kr with a numerical RHF method. J Phys B 28:4055–4071

    Article  CAS  Google Scholar 

  43. Cybulski SM, Haley TP (2004) New approximations for calculating dispersion coefficients. J Chem Phys 121:7711–7716

    Article  CAS  Google Scholar 

  44. Braunstein M, Duff JW (2000) Electronic structure and dynamics of O(3P) + CO(1+) collisions. J Chem Phys 112:2736–2745

    Article  CAS  Google Scholar 

  45. Rainwater JC, Holland PM, Biolsi L (1982) Binary collisions dynamics and numerical evaluation of dilute gas transport properties for potentials with multiple extrema. J Chem Phys 77:434–447

    Article  CAS  Google Scholar 

  46. Poveda LA, Varandas AJC (2003) Accurate single-valued double many-body expansion potential energy surface for ground-state HN2. J Chem Phys 107:7923–7930

    Article  CAS  Google Scholar 

  47. Stoecklin T, Voronin A (2007) H-N2 inelastic collision dynamics on new potential energy surface. Chem Phys 331:385–395

    Article  CAS  Google Scholar 

  48. Caridade PJSB, Rodrigues SPJ, Sousa F, Varanda AJC (2005) Unimolecular and bimolecular calculations for HN2. J Chem Phys 109:2356–2363

    Article  CAS  Google Scholar 

  49. Dickinson AS, Ern A, Vesovic V (2005) Transport properties of H-N2 mixtures. Mol Phys 103:1895–1904

    Article  CAS  Google Scholar 

  50. Stallcop JR, Partridge H, Walch SP, Levin E (1992) H-N2 interaction energies, transport cross sections, and collision integrals. J Chem Phys 97:3431–3436

    Article  CAS  Google Scholar 

  51. Colonna G, Laricchiuta A (2008) General numerical, algorithm for classical collision integral calculation. Comput Phys Commun 178:809–816

    Article  CAS  Google Scholar 

  52. Sourd B, Aubreton J, Elchinger MF, Labrot M, Michon U (2006) High temperature transport coefficients in e/C/H/N/O mixtures. J Phys D 39:1105–1119

    Article  CAS  Google Scholar 

  53. Monchick L, Mason EA (1961) Transport properties of polar gases. J Chem Phys 35:1676–1697

    Article  CAS  Google Scholar 

  54. Aubreton J, Elchinger MF, Vinson JM (2009) Transport coefficients in water plasma: Part I: equilibrium plasma. Plasma Chem. Plasma Proc 29:149–171

    Article  CAS  Google Scholar 

  55. Harding LB (1991) Studies of the hydrogen peroxide potential surface. 2. An ab initio, long range, OH (2∏) + OH (2∏) potential. J. Phys. Chem 95:8650–8653

    Google Scholar 

  56. Dhont GSF, van Lenthe JH, Groenenboom GC, van der Avoird A (2005) Ab initio calculation of the NH(3)-NH(3) interaction potentials in the quintet, triplet, and singlet states. J Chem Phys 123:184302

    Article  Google Scholar 

  57. Nelson DD, Schiffman A, Nesbitt DJ (1989) The dipole moment function and vibrational transition intensities of OH. J Chem Phys 90:5455–5465

    Article  CAS  Google Scholar 

  58. NIST Standard Reference Database, Computational Chemistry Comparison and Beenchmark DataBase. http://cccbdb.nist.gov

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. André.

Appendix

Appendix

The second sum of (relation 4) introduces discontinuities in the plasma composition (when the values of n max increase or decrease) as the temperature varies and these discontinuities will appear also in the calculated transport coefficients. Therefore we are obliged to remedy to this drawback having no physical justification. We have, with simplified notation and for neutral atomic species as an example, the following procedure: where n is the principal quantum number, E n (id. for E n−1 and E n+1) is the hydrogenic energy with statistical weight of 2n 2 g f and for \( E_{I} - \Updelta E_{I}^{0} \). We have defined \( E_{1} = (E_{n} + E_{n - 1} )/2 \) (id for E 2). Then, for this last state, the statistical weight is calculated using \( 2n^{2} g_{c} \frac{\Updelta E}{{E_{2} - E_{1} }} \). Our partition function Q ours is greater than classical calculated Q c for \( E_{I} - \Updelta E_{I}^{0} \) < E n and in the reverse order for \( E_{I} - \Updelta E_{I}^{0} \) > E n . Notice that the continuity of the first and second derivatives of the partition function are not ensured.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubreton, J., Elchinger, M.F. & André, P. Influence of Partition Function and Interaction Potential on Transport Properties of Thermal Plasmas. Plasma Chem Plasma Process 33, 367–399 (2013). https://doi.org/10.1007/s11090-012-9427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9427-3

Keywords

Navigation