Skip to main content
Log in

Analytical Expressions of Thermodynamic and Transport Properties of the Martian Atmosphere in a Wide Temperature and Pressure Range

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Calculation of thermodynamic and transport properties of CO2/N2/O2/Ar system (Martian atmosphere) have been performed in a wide pressure (0.01–100 bar) and temperature range (50–50,000 K). A self-consistent approach for the thermodynamic properties and higher order approximation of the Chapman–Enskog method for the transport coefficients have been used. Debye–Hückel corrections have been included in the calculation of thermodynamic properties while collision integrals derived following a phenomenological approach and accounting also for resonant processes contributions have been used. Moreover, charge–charge interactions have been obtained by using a screened Coulomb potential. Calculated values have been fitted by closed forms ready to be inserted in fluid dynamic codes in order to simulate plasma conditions for different technological applications. Comparison with data present in literature is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vacher D, Da Silva ML, André P, Faure G, Dudeck M (2008) Plasma Sources Sci Technol 17(3):035012

    Article  Google Scholar 

  2. Isozaki N, Fujino T, Ishikawa M (2009) In: 40th AIAA plasmadynamics and lasers conference 2009, p 3737

  3. Ala G, Silvestre M, Viola F, Francomano E (2009) Prog Electromagn Res B 14:1

    Article  Google Scholar 

  4. Chemartin L, Lalande P, Montreuil E, Delalondre C, Chéron B, Lago F (2009) J Phys D Appl Phys 44:194003

    Article  Google Scholar 

  5. Cressault Y, Connord V, Hingana H, Teulet P, Gleizes A (2011) J Phys D Appl Phys 44:495202

    Article  Google Scholar 

  6. Ekici O, Ezekoye O, Hall M, Matthews R (2007) Trans ASME 129:55

    Google Scholar 

  7. Kubicek B, Berger K (2008) Electrical contacts. In: Proceedings of the annual Holm conference on electrical contacts 2008, pp 27–34

  8. Li Z, Zhang H, Jia J (2010) Hanjie Xuebao/Trans China Weld Inst 31:17

    Google Scholar 

  9. Shneider M (2006) Phys Plasmas 13:073501

    Article  Google Scholar 

  10. Teulet P, Gonzalez J, Mercado-Cabrera A, Cressault Y, Gleizes A (2009) J Phys D Appl Phys 42:175201

    Article  Google Scholar 

  11. Wang F, Jin Z, Zhu Z (2006) Ironmak Steelmak 33:39

    Article  Google Scholar 

  12. Kosse S, Wendt M, Uhrlandt D, Weltmann KD, Franck C (2007) In: Proceedings of PPPS-2007 Conference, vol 2, pp 1013–1017

  13. Lebouvier A, Delalondre C, Fresnet F, Cauneau F, Fulcheri L (2012) J Phys D Appl Phys 45:025204

    Article  Google Scholar 

  14. Lebouvier A, Delalondre C, Fresnet F, Boch V, Rohani V, Cauneau F, Fulcheri L (2011) IEEE Trans Plasma Sci 39:1889

    Article  Google Scholar 

  15. Chang Z, Zhao N, Yuan P (2010) Phys Plasmas 17:113514

    Article  Google Scholar 

  16. Chemartin L, Lalande P, Delalondre C, Chéron B, Lago F (2011) Atmos Res 91:371–380

    Article  Google Scholar 

  17. Yuhua O, Ping Y (2012) J Earth Syst Sci 121:211

    Article  Google Scholar 

  18. Surzhikov S (2005) Fluid Dyn 40:446

    Article  Google Scholar 

  19. Joshi S, Yalin A, D’Angola A, Colonna G, Dumitrescu C, Puzinauskas P, El-Rabi H (2010) 41st AIAA plasmadynamics and lasers conference 2010, p 4309

  20. Paterna D, Savino R, De Filippis F, Da Silva M, European Space Agency, (Special Publication) ESA REPORT n. SP 629 SP

  21. Takahashi Y, Kihara H, Abe KI (2011) J Phys D Appl Phys 44:085203

    Article  Google Scholar 

  22. Kolesnikov A, Yakushin M, Pershin I, Vasil’evskii S (1999) 9th AIAA international space planes and hypersonic systems and technologies conference, AIAA paper 99:4892

  23. Kolesnikov A (1993) Fluid Dyn 28:131 (translated from Russian)

    Article  Google Scholar 

  24. Baumgart J, Leicht T, Magin T, Barbante P, Rini P, Degrez G, Grundmann R (2009) In: Deconinck H, Dick E (eds) Computational fluid dynamics 2006. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  25. Capitelli M, Colonna G, Gorse C, Giordano D (1994) Survey of methods of calculating high-temperature thermodynamic properties of air species, Tech. Rep. STR-236, European Space Agency

  26. Capitelli M, Colonna G, Giordano D, Marraffa L, Casavola A, Minelli P, Pagano D, Pietanza LD, Taccogna F, Warmbein B (2005) Tables of internal partition functions and thermodynamic properties of high-temperature Mars-atmosphere species from 50 K to 50000 K, Tech. Rep. STR-246, European Space Agency

  27. André P, Aubreton J, Clain S, Dudeck M, Duffour E, Elchinger M, Izrar B, Rochette D, Touzani R, Vacher D (2010) Eur Phys J D 57:227

    Article  Google Scholar 

  28. D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Eur Phys J D 46:129

    Article  Google Scholar 

  29. Capitelli M, Colonna G, D’Angola A (2011) Fundamental aspects of plasma chemical physics: thermodynamics, 1st edn. Springer, New York

    Google Scholar 

  30. Colonna G, D’Angola A (2004) Comput Phys Commun 163:177

    Article  CAS  Google Scholar 

  31. Colonna G (2007) Comput Phys Commun 177:493

    Article  CAS  Google Scholar 

  32. Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F (2009) Eur Phys J D 54:607

    Article  CAS  Google Scholar 

  33. Capitelli M, Gorse C, Longo S, Giordano D (2000) JTHT 14:259

    CAS  Google Scholar 

  34. Capitelli M, Colonna G, Gorse C, D’Angola A (2000) Eur Phys J D 11:279

    Article  CAS  Google Scholar 

  35. Hahn HS, Mason EA, Smith FJ (1971) Phys Fluids 14:278

    Article  CAS  Google Scholar 

  36. D’Angola A, Colonna G, Gorse C, Capitelli M (2011) Eur Phys J D 65:453

    Article  Google Scholar 

  37. Catalfamo C, Bruno D, Colonna G, Laricchiuta A, Capitelli M (2009) Eur Phys J D 54:613

    Article  CAS  Google Scholar 

  38. Bernardi D, Colombo V, Coppa G, D’Angola A (2001) Eur Phys J D 14:337

    Article  CAS  Google Scholar 

  39. Riabov V (1996) J Thermophys Heat Transf 10:209

    Article  CAS  Google Scholar 

  40. Colonna G, D’Angola A, Capitelli M (2012) Phys Plasmas 19:072115

    Article  Google Scholar 

  41. D’Angola A, Colonna G, Bonomo A, Bruno D, Laricchiuta A, Capitelli M (2012) Eur Phys J D 66:205

    Article  Google Scholar 

  42. Giordano D, Capitelli M, Colonna G, Gorse C (1994) Tables of internal partition functions and thermodynamic properties of high-temperature air species from 50 K to 10000 K, Tech. Rep. STR-237, European Space Agency

  43. Pagano D, Casavola A, Pietanza LD, Capitelli M, Colonna G, Giordano D, Marraffa L (2009) Internal partition functions and thermodynamic properties of high-temperature jupiter-atmosphere species from 50 K to 50,000 K, Tech. Rep. STR-257, ESA

  44. NIST Atomic Spectra Database. URL http://www.nist.gov/srd/index.htm

  45. Moore CE (1949) Selected tables of atomic spectra, Nbs-467, National Bureau of Standards

  46. Devoto RS (1967) Phys Fluids 10:354

    Article  CAS  Google Scholar 

  47. Capitelli M (1977) J Phys Colloque C3(8):227

    Google Scholar 

  48. Hirschfelder JO, Curtiss CF, Bird RB (1966) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  49. Butler JN, Brokaw RS (1957) J Chem Phys 26:1636

    Article  CAS  Google Scholar 

  50. Eucken A (1913) Z Phys 14:324

    CAS  Google Scholar 

  51. Bruno D, Capitelli M, Catalfamo C, Laricchiuta A (2007) Phys Plasmas 14:072308

    Article  Google Scholar 

  52. Bruno D, Laricchiuta A, Capitelli M, Catalfamo C (2007) Phys Plasmas 14:022303

    Article  Google Scholar 

  53. Eletskii A, Capitelli M, Celiberto R, Laricchiuta A (2004) Phys Rev A 69:042718

    Article  Google Scholar 

  54. Sourd B, André P, Aubreton J, Elchinger MF (2007) Plasma Chem Plasma Process 27:35

    Article  CAS  Google Scholar 

  55. Kosarim A, Smirnov B, Capitelli M, Celiberto R, Laricchiuta A (2006) Phys Rev A 74:062707

    Article  Google Scholar 

  56. Kosarim A, Smirnov B (2005) J Exp Theor Phys 101:611

    Article  CAS  Google Scholar 

  57. Devoto RS (1966) Phys Fluids 9:1230

    Article  CAS  Google Scholar 

  58. Mason EA, Munn RJ, Smith FJ (1967) Phys Fluids 10:1827

    Article  Google Scholar 

  59. Wright MJ, Bose D, Palmer GE, Levin E (2005) AIAA J 43:2558

    Article  CAS  Google Scholar 

  60. Wright MJ, Hwang HH, Schwenke DW (2007) AIAA J 45:281

    Article  CAS  Google Scholar 

  61. Magin T, Degrez G, Sokolova I (2002) 33rd AIAA plasmadynamics and lasers conference, p 2226

  62. Belyaev YN, Brezhnev BG, Erastov EM (1968) Sov Phys JEPT 27:924

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D’Angola.

Appendix: Analytical Expressions of Thermodynamic and Transport Properties

Appendix: Analytical Expressions of Thermodynamic and Transport Properties

In this appendix we report analytical expressions of thermodynamic and transport properties in the temperature range 50–50,000 K and in the pressure range 0.01–100 bar.

The following set of functions has been used:

Gaussian

$$ \begin{aligned} \gamma (T;c,\Updelta ) & = & e^{{ - q^{2} }} ,\quad q = \frac{T - c}{\Updelta } \\ \gamma_{i} (T) & = & \gamma (T;c_{i} ,\Updelta_{i} ) \\ \end{aligned} $$
(12)

Sigmoid

$$ \begin{aligned} \sigma (T;c,\Updelta ) & = & \frac{{e^{q} }}{{e^{q} + e^{ - q} }},\quad q = \frac{T - c}{\Updelta } \\ \sigma_{i} (T) & = & \sigma (T;c_{i} ,\Updelta_{i} ) \\ \end{aligned} $$
(13)

Special functions

$$ \begin{aligned} \xi (T,a,c,\Updelta ,w) & = & a - ce^{ - (T/\Updelta )w} \\ \xi_{i} (T) & = & \xi (T;a_{i} ,c_{i} ,\Updelta_{i} ,w_{i} ) \\ \end{aligned} $$
(14)
$$ \begin{aligned} \phi (T;a,w) & = & aT^{w} \\ \phi_{i} (T) & = & \phi (T;a_{i} ,w_{i} ) \\ \end{aligned} $$
(15)

The dependence of the fitted data on the pressure has been calculated by fitting the parameters a i , c i , Δ i , w i as a function of the pressure logarithm. In particular this expression has been used

$$ C = \sum\limits_{j = 0}^{n} {\alpha_{j} x^{j} } $$
(16)

where x = log(P) and C represents any of the parameters (or its natural logarithm) a i , c i , Δ i , w i of listed functions. α j coefficients calculated by Eq. (6) are reported in Tables 210. In this way all the quantities are expressed as a function of two variables, P and T. Extrapolation out of the pressure range is not recommended, while the temperature dependence is very accurate up to 80,000 K. Relative errors of analytical expressions are always less than 5 %. Figure 14 shows the comparison of specific heats at constant pressure at P = 1, 100 bar and the percentage relative errors.

Fig. 14
figure 14

Comparison of specific heats at constant pressure and percentage relative errors at P = 1 bar (data: square, analytical values: full line) and P = 100 bar (data: circle, analytical values: dashed line) obtained by using the analytical expression given by Eq. (22)

To calculate electron molar fractions, mean molar mass, specific enthalpy, specific heat, specific entropy thermal and electric conductivities and viscosity, the following analytical expressions can be used

Electron molar fraction, T < 20,000 K

$$ \begin{gathered} \chi_{e} (P,T) = (1 - \sigma_{0} (T))\exp [\sum\limits_{i = 0}^{6} {\delta_{i} (P)T^{i} } ] \hfill \\ + a_{1} \sigma_{0} (T)\sigma_{1} (T)\sigma_{m} (T) + \sigma_{0} (T)[a_{2} \sigma_{2} (T) + a_{3} \sigma_{3} (T) - a_{4} \gamma_{4} (T)] \hfill \\ \end{gathered} $$
(17)

where

$$ \delta_{i} (P) = \sum\limits_{k = 0}^{6} {\beta_{k,i} } [\log (P)]^{k} $$

Electron molar fraction, 20,000 K < T < 50,000 K

$$ \chi_{e} = \sum\limits_{j = 1}^{N} {a_{j} \sigma_{j} } (T) $$
(18)

Mean Molar Mass [kg/mol] and Gas Density [kg/m3]

$$ \bar{M} = c_{0} - \sum\limits_{j = 1}^{6} {a_{j} \sigma_{j} } (T)+ a_{7} \gamma_{7} (T) $$
(19)
$$ \rho = \frac{P}{RT}\bar{M} $$
(20)

Specific Enthalpy [cal/g]

$$ H = \sum\limits_{j = 0}^{4} {c_{j} T^{j} + } \sum\limits_{j = 1}^{7} {a_{j} \sigma_{j} (T)} $$
(21)

Specific heat [cal/g/K]

$$ c_{p} = \sum\limits_{j = 0}^{1} {c_{j} T^{j} + } \sum\limits_{j = 1}^{5} {a_{j} \sigma_{j} (T)} + \sum\limits_{j = 6}^{19} {a_{j} \gamma_{j} (T)} $$
(22)

Specific Entropy [cal/g/K]

$$ S = \sum\limits_{j = 1}^{7} {a_{j} \sigma_{j} } (T) + \phi_{0} (T) $$
(23)

Electric Conductivity [S/m]

$$ \log \sigma = \xi_{0} (\log (T)) + \sum\limits_{j = 1}^{7} {a_{j} \sigma_{j} } (T) $$
(24)

Thermal Conductivity [W/K/m]

$$ \log \lambda = a_{0} + \sum\limits_{j = 1}^{6} {a_{j} \sigma_{j} } (\log (T)) + \sum\limits_{j = 7}^{11} {a_{j} \gamma_{j} } (\log (T)) $$
(25)

Viscosity [Kg/m/s]

$$ \log \eta = \log [\xi_{0} (T) + \sum\limits_{j = 1}^{5} {a_{j} \sigma_{j} } (T)] + \sum\limits_{j = 6}^{10} {a_{j} \sigma_{j} } (T) $$
(26)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colonna, G., D’Angola, A., Laricchiuta, A. et al. Analytical Expressions of Thermodynamic and Transport Properties of the Martian Atmosphere in a Wide Temperature and Pressure Range. Plasma Chem Plasma Process 33, 401–431 (2013). https://doi.org/10.1007/s11090-012-9418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9418-4

Keywords

Navigation