Skip to main content
Log in

Plasma Catalytic Oxidation of Stored Benzene in a Cycled Storage-Discharge (CSD) Process: Catalysts, Reactors and Operation Conditions

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

High energy cost and secondary pollutants formation makes the plasma-based technique impractical. To solve these problems, the effects of different catalysts, reactor configurations and operating conditions on plasma catalytic oxidation of stored benzene in a cycled storage-discharge process were investigated in detail. It is shown that the catalysts and reactor configurations were the main factors affecting the plasma catalytic oxidation of stored benzene. When 0.8 wt% Ag/HZSM-5 catalysts and in-plasma catalytic reactor are used, the stored benzene could be oxidized completely to CO2 in a very short discharge period and almost no secondary pollutant formation is observed. In addition, the relative humidity of air streams at storage stage showed little influence on the plasma catalytic oxidation of stored benzene. When the storage period increased from 1 to 14 h, a small increase of discharge period from 9 to 24 min was required to achieve ~100% conversion of stored benzene to CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Harling M, Demidyuk V, Fischer SJ, Whitehead JC (2008) Appl Catal B Environ 82:180–189

    Article  Google Scholar 

  2. Subrahmanyam C, Magureanu A, Renken A, Kiwi-Minsker L (2006) Appl Catal B Environ 65:150–156

    Article  Google Scholar 

  3. Nunez CM, Ramsey GH, Ponder WH, Abbott JH, Hamel LE, Kariher PH (1993) Air Waste 43:242–247

    Google Scholar 

  4. Harling AM, Glover DJ, Whitehead JC, Zhang K (2008) Environ Sci Technol 42:4546–4550

    Article  Google Scholar 

  5. Harada N, Matsuyama T, Yamamoto H (2007) J Electrostat 65:43–53

    Article  Google Scholar 

  6. Morent R, Leys C, Dewulf J, Neirynck D, Van Durme J, Van Langenhove H (2007) J Adv Oxid Technol 10:127–136

    Google Scholar 

  7. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324–333

    Article  Google Scholar 

  8. Chen HL, Lee HM, Chen SH, Chang MB (2008) Ind Eng Chem Res 47:2122–2130

    Article  Google Scholar 

  9. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216–2227

    Article  Google Scholar 

  10. Yan XF, Hu Z (2004) Plasma Sci Technol 6:2241–2246

    Article  ADS  Google Scholar 

  11. Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T (2002) Appl Catal A Gen 236:9–15

    Article  Google Scholar 

  12. Kim HH, Kobara H, Ogata A, Futamura S (2005) IEEE Trans Ind Appl 41:206–214

    Article  Google Scholar 

  13. Rubio SJ, Rodero A, Quintero MC (2008) Plasma Chem Plasma Process 28:415–428

    Article  Google Scholar 

  14. Marotta E, Schiorlin M, Rea M, Paradisi C (2010) J Phys D Appl Phys 43:124011

    Article  ADS  Google Scholar 

  15. Magureanu M, Mandache NB, Eloy P, Gaigneaux EM, Parvulescu VI (2005) Appl Catal B Environ 61:12–20

    Article  Google Scholar 

  16. Kuroki T, Fujioka T, Kawabata R, Okubo M, Yamamoto T (2009) IEEE Trans Ind Appl 45:10–15

    Article  Google Scholar 

  17. Martin L, Ognier S, Gasthauer E, Cavadias S, Dresvin S, Amouroux J (2008) Energ Fuel 22:576–582

    Article  Google Scholar 

  18. Kim HH, Oh SM, Ogata A, Futamura S (2005) J Adv Oxid Technol 8:226–233

    Google Scholar 

  19. Fan HY, Shi C, Li XS, Zhao DZ, Xu Y, Zhu AM (2009) J Phys D Appl Phys 42:225105

    Article  ADS  Google Scholar 

  20. Yang RT, Killinides ES (1995) AICHE J 41:509–517

    Article  Google Scholar 

  21. Yang FH, Hernandez-Maldonado AJ, Yang RT (2004) Sep Sci Technol 39:1717–1732

    Article  Google Scholar 

  22. Ding HX, Zhu AM, Lu FG, Xu Y, Zhang J, Yang XF (2006) J Phys D Appl Phys 39:3603–3608

    Article  ADS  Google Scholar 

  23. Cvetanovic RJ (1987) J Phys Chem 16:261–326

    Google Scholar 

  24. Kim HH, Ogata A, Futamura S (2008) Appl Catal B Environ 79:356–367

    Article  Google Scholar 

  25. Toby S, Van De Burgt LJ, Toby FS (1985) J Phys Chem 89:1982–1986

    Article  Google Scholar 

  26. Ogata A, Shintani N, Yamanouchi K, Mizuno K, Kushiyama S, Yamamoto T (2000) Plasma Chem Plasma Process 20:453–467

    Article  Google Scholar 

  27. Guo YF, Ye DQ, Chen KF, Tian YF (2006) Plasma Chem Plasma Process 26:237–249

    Article  Google Scholar 

  28. Kim HH, Ogata A, Futamura S (2005) J Phys D Appl Phys 38:1292–1300

    Article  ADS  Google Scholar 

  29. Ogata A, Miyamae K, Mizuno K, Kushiyama S, Tezuka M (2002) Plasma Chem Plasma Process 22:537–552

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National High Technology Research and Development Program (863 Program) of China (2007AA06Z311), National Natural Science Foundation of China (11079013, 10775028), Program for Innovation Research Team in Universities of Liaoning Province (2009T016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Min Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, HY., Li, XS., Shi, C. et al. Plasma Catalytic Oxidation of Stored Benzene in a Cycled Storage-Discharge (CSD) Process: Catalysts, Reactors and Operation Conditions. Plasma Chem Plasma Process 31, 799–810 (2011). https://doi.org/10.1007/s11090-011-9320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9320-5

Keywords

Navigation